Home Work (4)

Task 16: Isotope shift in lithium

Estimate the normal mass shift of the 2s - 2p transition in Lithium for the two isotopes ⁶Li and ⁷Li. Use the experimentally available transition energy, for your estimate.

Task 17: Spin-orbit coupling

Calculate the expectation value of the spin-orbit coupling Hamiltonian

$$H_{\rm LS} = \frac{\mu_B}{c^2} \frac{1}{r} \frac{\partial V}{\partial r} \boldsymbol{L} \cdot \boldsymbol{S}$$

for the eigenstates of a hydrogen-like atom. **Hint:** You can use

$$\langle r^{-1} \rangle = \frac{1}{n^2} \qquad \qquad \langle r^{-2} \rangle = \frac{1}{\left(l + \frac{1}{2}\right)n^3 a^2}$$

where $a = a_0/Z$, as well as Kramer's relation:

$$\frac{a^2s}{4}\left(\left(2\ell+1\right)^2-s^2\right)\left\langle r^{s-2}\right\rangle-a\left(2s+1\right)\left\langle r^{s-1}\right\rangle+\frac{s+1}{n^2}\left\langle r^s\right\rangle=0$$

Task 19: Angular Momentum coupling (2)

a) Prove that only three terms (¹S, ¹D, ³P) are allowed for the ground-state configuration 1s²2s²2p² of a carbon-like system. Work in LS-coupling.

b) Find all terms, which are possible for the electronic configuration d^2 .

c) Couple the two valence shells to the electronic configuration $p^2 d^2$

Task 18: Relativistic angular momentum coupling

List the possible terms $(n_1j_1, n_2j_2, ...)$ and total angular momentum J in jj-coupling for the following electronic configurations:

a) $1s^2$

b) 1s2s

c) $1s^2 2s^2 2p$

d) $1s^2 2s^2 2p^5$

e) ns n'p

f) np n'd