Quantenmechanik I

— Vorlesungsskript, —

WS 2018/19

 $\begin{array}{l} \mbox{http://www.atomic-theory.uni-jena.de/} \\ \rightarrow \mbox{Teaching} \rightarrow \mbox{Quantenmechanik} \end{array}$

(Notizen und zusätzliches Material)

Stephan Fritzsche

Helmholtz-Institut Jena &

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Fröbelstieg 3, D-07743 Jena, Germany

(Email: s.fritzsche@gsi.de, Telefon: +49-3641-947606, Raum 204)

Hinweise auf Druckfehler bitte an etc. to s.fritzsche@gsi.de.

13. Februar 2019

0.	Vort	betrachtungen	9
	0.1.	Ablauf und Vereinbarungen	9
	0.2.	Literaturhinweise	10
1.	Einf	ührung in die QM; Versagen der klassischen Physik	11
	1.1.	Klassische Theorie (Newton, lex seconda, 1687)	11
	1.2.	Historische Experimente und Befunde	12
		1.2.a. Fotoelektrischer Effekt (Foto-Effekt)	12
		1.2.b. Compton Effekt	13
		1.2.c. de-Broglie (Materie) Wellen	14
		1.2.d. Linienspektrum und diskrete Zustände	15
		1.2.e. Stern-Gerlach Versuch (1922)	16
		1.2.f. Elektronenbeugung am Doppelspalt	16
	1.3.	Aufgaben	16
2.	Wel	lenfunktion und Schrödinger-Gleichung (SG)	21
	2.1.	SG freier Teilchen	21
	2.2.	Wahrscheinlichkeitsinterpretation und Kontinuitätsgleichung	23
		2.2.a. Bornsche Wahrscheinlichkeitshypothese und Kopenhagener Interpretation	23
		2.2.b. Kontinuitätsgleichung	23
	2.3.	Superposition ebener Wellen; Gaußsche Wellenpakete	24
	2.4.	Einschub: Operatoren und Skalarprodukte	26
	2.5.	Korrespondenzprinzip der QM	30

2.6.	Postulate der QM	31
2.7.	Einschub: Eigenwertgleichungen	35
2.8.	Stationäre Lösungen der SG	36
2.9.	Zur Interpretation der EW physikalischer Operatoren	37
2.10). Aufgaben	39
3. Eine	dimensionale Probleme	41
3.1.	Unendlicher Potenzialtopf	41
3.2.	Endlicher Potenzialtopf	44
3.3.	Potenzialstufe	46
	3.3.a. Teilchenenergie oberhalb der Potenzialstufe	47
	3.3.b. Teilchenenergie kleiner als Potenzialstufe, $E < V_o$	50
3.4.	Quantenmechanisches Tunneln (Tunneleffekt)	51
	3.4.a. α -Zerfall instabiler Kerne	52
	3.4.b. Fusion zweier Kerne	54
	3.4.c. Kalte Elektronenemission	55
3.5.	Einschub: Hermite-Polynome	56
3.6.	Harmonischer Oszillator	58
3.7.	Parität eindimensionaler Lösungen	61
3.8.	Diskussion der 1-dimensionalen SG	62
3.9.	Aufgaben	64

4.	Unschärferelationen	65
	4.1. Schwarzsche Ungleichung	
	4.2. Allgemeine Unschärferelation	
	4.3. Energie-Zeit Unschärfe	67
	4.4. Gemeinsame Eigenfunktionen kommutierender Operatoren	69
	4.5. Aufgaben	

5.	Dre	himpulse in der QM	73
	5.1.	Vertauschungsrelationen; Drehungen im Raum	73
		5.1.a. Vertauschungsrelationen	74
		5.1.b. Operatoren im gedrehten System S'	75
		5.1.c. Spezialfälle	75
	5.2.	Eigenwerte des Drehimpulses	75
	5.3.	Eigenfunktionen des Bahndrehimpulses	77
		5.3.a. Bahndrehimpulsoperator in Kugelkoordinaten	77
		5.3.b. EW-Gleichungen	78
		5.3.c. Lösungen der EW-Gleichungen	79
		5.3.d. Erinnerung: Kugelflächenfunktionen	79
		5.3.e. Physikalische Notationen:	80
	5.4.	Aufgaben	82
6.	Drei	idimensionale SG; Zentralpotentiale	83
	6.1.	Separation in kartesischen Koordinaten	84
		6.1.a. 3-dimensionaler (∞ -tiefer) Potentialtopf	85
		6.1.b. 3-dimensionaler harmonischer Oszillator	86
	6.2.	Separation der SG in Kugelkoordinaten	87
	6.3.	Das Wasserstoff-Atom (H-Atom)	89
		6.3.a. Allgemeine Aussage über die Existenz von Bindungszuständen	90
		6.3.b. Radiale Schrödinger-Gleichung	91
		6.3.c. Eigenwerte und Energien	92
		6.3.d. Wellenfunktionen	93
	6.4.	Diskussion zum Wasserstoff-Atom (H-Atom)	95
		6.4.a. Anmerkungen	95
		6.4.b. Weitere Korrekturen zum H-Atom	99
	6.5.	Aufgaben	100
	6.6.	Atomic theory and computations in a nut-shell	101
		6.6.a. Atomic spectroscopy: Level structures & collisions	101
		6.6.b. Atomic theory	102

	6.7.	Need of (accurate) atomic theory and data	104
7.	Dars	stellungstheorie	107
	7.1.	Vektoren, Matrizen, unitäre Transformationen	107
	7.2.	Zustandsvektoren; Dirac-Schreibweise	110
		7.2.a. Dirac-Notation	111
		7.2.b. Operatoren in einem allgemeinen Zustandsraum	114
		7.2.c. Adjungierter Operator zu A	115
	7.3.	Orts- und Impulsdarstellung von Zustandsvektoren	115
		7.3.a. Axiome der QM	115
		7.3.b. Stationäre Zustände	116
		7.3.c. Ortsdarstellung	116
		7.3.d. Impulsdarstellung	116
		7.3.e. Darstellung in einer diskreten Basis	117
	7.4.	Vielteilchensysteme	118
	7.5.	Schrödinger- und Heisenbergdarstellung	119
		7.5.a. Zeitunabhängiger Hamiltonoperator $H \neq H(t)$	119
		7.5.b. Heisenberg-Darstellung	119
		7.5.c. Erhaltungssätze	121
		7.5.d. Wechselwirkungsdarstellung (Dirac-Darstellung)	122
	7.6.	Aufgaben	122
8.	Spir		123
	8.1.	Stern-Gerlach Versuch und normaler Zeeman-Effekt	123
	8.2.	Elektronenspin $s = 1/2$	124
	8.3.	Eigenschaften der Pauli-Matrizen	125
	8.4.	Spinzustände	126
	8.5.	Magnetische Momente	127
	8.6.	Spin vs. Ortsvariablen	129
	8.7	Kopplung von Drehimpulsen	130
	0.11	8.7.a. Gesamtdrehimpuls eines Spin-1/2 Teilchen	130

 8.7.6. Köpplung von zwei Dreininpulses		131 133 133 134 134
9. Näherungsmethoden zur Berechnung stationärer Zustände		135
9.1. Ritzsches Variationsverfahren		135
9.1.a. Herangehen		135
9.2. Zeitunabhängige Störungstheorie ohne Entartung (Rayleigh-Schödinger ST)		138
9.3. Zeitunabhängige Störungstheorie mit Entartung		143
9.3.a. Non-degenerate states		144
9.3.b. Degenerate states		146
9.4. Hydrogen atom: Spin and relativistic corrections		148
9.4.a. Perturbations to the non-relativistic Hamiltonian		148
9.5. Time-independent perturbation theory: A short reminder		149
9.5.a. Non-degenerate states	•••••	149
9.5.b. Degenerate states	•••••	151
9.6. Time-dependent perturbation theory		153
9.0.a. SE with time-dependent perturbations		153
9.7. Zeitunabhangige Storungstneorie mit Entartung		100 156
9.6. Augaben		100
A. Spezielle Funktionen		157
A.1. Vollständige Sätze orthogonaler Funktionen		157
A.2. Legendre-Polynome		161
A.3. Zugeordnete Legendre-Funktionen		162
A.4. Kugelfunktionen		162

0. Vorbetrachtungen

0.1. Ablauf und Vereinbarungen

Vorlesungszeit:	$15. \ 10. \ 2018 - 08. \ 02. \ 2019$		
Vorlesung:	Mo $10 - 12$, Rotes Haus, HS 3		
	Mi $12 - 14$, Abbeanum, HS 2		
Übungen:	Mo 12 – 14, MWP, SR 1, Physik (Jiri Hofbrucker)		
	Mi 14 – 16, MWP, SR 1, Physik (Willi Paufler, Lehramt)		
Tutorium:	??		
ECTS Punkte:	8 (inklusive einiger 'Kurztests' und einer erfolgreichen schriftl. Klausur).		
Prüfungsleistung:	Erfolgreiche Klausur (70 %) 'plus' Übungen und Kurttests (30 %).		
Prüfungszulassung:	Modulanmeldung mittels Fridolin		
	mindestens 50 % der Punkte aus den Übungen.		
Klausur:	Montag, 11. Februar 2018, $9 - 12$, Abbeanum, HS 2;		
	(1. Wiederholung/Nachklausur: Montag, 1. April 2018, 9 – 12, Abbeanum, HS 2)		
Informationen für uns:	siehe Übungen.		
Selbststudium und Frag	gen während Vorlesung:		

0.2. Literaturhinweise

- ≻ W. Greiner: Theoretische Physik: 4. Quantenmechanik: Eine Einführung (Springer, Berlin, 2005).
- ≻ T. Fließbach: Quantenmechanik (Spektrum, Akademischer Verlag, 2005).
- ≻ F. Schwabl: Quantenmechanik (Springer, Berlin, 1988).
- ≻ L. D. Landau und E. M. Lifschitz: Lehrbuch der Theoretischen Physik III: Quantenmechanik (Akademie-Verlag, Berlin, 1989).
- ≻ P. Reineker, M. Schulz und B. M. Schulz: Theoretische Physik III, Quantenmechanik (Wiley-VCH, 2006).
- R. P. Feynman, R. B. Leighton und M. Sands, *The Feynman Lectures on Physics*, Vol. I-III (Addison-Wesley Publishing Company, Reading, 1971).
- \succ Ferner gibt es im Web eine Vielzahl von empfehlenswerten Skripten im Internet.

1. Einführung in die QM; Versagen der klassischen Physik

1.1. Klassische Theorie (Newton, lex seconda, 1687)

Charakterisierung eines physikalischen Zustandes:

- \succ Mechanische Objekte: Massenpunkte, Systeme von Massenpunkte, starre Körper.
- \succ Kinematik: Bahnkurven $\mathbf{x}(t)$ im Raum.
- > Impuls: $\mathbf{p}(t)$
- ≻ Energie-Impuls Beziehung:

$$E = \frac{\mathbf{p}^2}{2m} = \frac{m}{2} \mathbf{v}^2$$

> Dynamik: Kräfte als Ursache einer nichttrivialen Beweggung, $\ddot{\mathbf{x}} \equiv \frac{d^2 x}{dt^2} \propto \mathbf{F} = \frac{d\mathbf{p}}{dt}$. 2. Newtonsches Axiom

≻ Diese (empirische) Erfahrung wurde in allen Experimenten (ohne Ausnahme !) immer wieder bestätigt.

Empirische Notwendigkeit für neue Theorie:

- \succ Welle-Teilchen Dualismus: Quantenteilchen sind weder Teilchen noch Wellen.
- \succ Diskrete (atomare) Zustände sind klassisch unverständlich.

1. Einführung in die QM; Versagen der klassischen Physik

1.2. Historische Experimente und Befunde

1.2.a. Fotoelektrischer Effekt (Foto-Effekt)

 \succ Elektronen mit einer maximalen kinetischen Energie

$$E_{\text{max}} = \frac{m}{2} \mathbf{v}_{\text{max}}^2 = \hbar \omega - \phi$$
 ... Austrittsarbeit

- ▶ Photonenhypothhese (Eintein, 1905): Licht der Frequenz ω kann nur in ganzzahligen Quanten $\hbar \omega$ emittiert oder absorbiert werden.
- \succ Photonen sind Lichtquanten, die sich mit Lichtgeschwindigkeit c bewegen und in Richtung des em Wellenvektors k ausbreiten.

 \succ Daher: klassische Erwartung \neq Experiment

1.2.b. Compton Effekt

≻ Energie- und Impulserhaltung führt zu:

$$\left(\frac{1}{\omega'} - \frac{1}{\omega}\right) = \frac{\hbar}{mc} \left(1 - \cos\vartheta\right) \qquad \iff \qquad \lambda' - \lambda = \frac{2\pi \hbar}{mc} \left(1 - \cos\vartheta\right) = \lambda_c \left(1 - \cos\vartheta\right)$$

Teilchencharakter eines Lichtquants

- \succ "Welle-Teilchen Dualismus": Quantenteilchen sind weder Teilchen noch Wellen,
- \succ Eine analoge Dualität gilt in der QM für jedes Teilchen der klassischen Physik.

- 1. Einführung in die QM; Versagen der klassischen Physik
 - \succ Herleitung der Compton-Streuformel mit Hilfe des erhaltenen Viererimpulses .

$$\hbar \begin{pmatrix} k \\ \mathbf{k} \end{pmatrix} + \begin{pmatrix} mc \\ 0 \end{pmatrix} = \hbar \begin{pmatrix} k' \\ \mathbf{k'} \end{pmatrix} + \begin{pmatrix} \sqrt{\mathbf{p'}^2 + m^2 c^2} \\ \mathbf{p'} \end{pmatrix}$$

$$\left[\hbar \begin{pmatrix} (k - k') \\ (\mathbf{k} - \mathbf{k'}) \end{pmatrix} + \begin{pmatrix} mc \\ 0 \end{pmatrix} \right]^2 = \mathbf{p'}^2 + m^2 c^2 - \mathbf{p'}^2 = m^2 c^2$$

$$(a^o, \mathbf{a}) (b^o, \mathbf{b}) = a^o b^o - \mathbf{a} \cdot \mathbf{b}$$

$$m^2 c^2 + 2\hbar (k - k')mc - 2\hbar^2 (kk' - \mathbf{k} \cdot \mathbf{k'}) = m^2 c^2 \qquad \Longrightarrow \qquad k - k' = \frac{\hbar}{mc} kk' (1 - \cos \vartheta)$$

- ≻ Compton-Wellenlänge $\bar{\lambda}_c = \hbar/mc$:
 - Elektron $\bar{\lambda}_c = \hbar/m_e c = 3.86 \cdot 10^{-11} \text{ cm}$
 - Proton $\bar{\lambda}_c = \hbar/m_p c = 2 \cdot 10^{-14} \text{ cm}$

1.2.c. de-Broglie (Materie) Wellen

> Experimenteller Befund:
$$\lambda = \frac{2\pi\hbar}{p} = \frac{12.2A}{\sqrt{E_{\text{kin}} [\text{eV}]}}$$

 \succ de-Broglie Hypothese: Jedes Teilchen mit Energie E und Impuls **p** besitzt auch eine eindeutige Frequenz und Wellenlänge (Wellenzahl).

Gesamtenergie $E = \hbar \omega$ Frequenz Impuls $\mathbf{p} = \hbar \mathbf{k}$ Wellenzahl (-vektor) $p = \hbar k = \frac{2\pi \hbar}{\lambda}$ Wellenlänge

 \succ Dennoch: Teilchencharakter mikroskopischer Objekte bleibt gewahrt:

- Ionisation in der Wilson-Kammer
- Streu- und Stoßexperimente zwischen mikroskopischen Teilchen
- Millikan-Versuch: Elektrische Ladung tritt stets als Vielfaches der Elektronenladung e^- auf.

1.2.d. Linienspektrum und diskrete Zustände

\succ Rutherford-Bohr Atommodell:

- Fast die gesamte Masse ist in einem kleinen Kern im Zentrum konzentriert $(m_p/m_e \approx 1836)$
- Punktförmige Elektronen umlaufen den Kern. Klassisch erwarten wir eine Abstrahlung und Instabilität.
- Bohrs Quantisierungsbedingung (1913): Es gibt stabile Zustände, die die Bedingung $\oint p \, dq = 2\pi \hbar n$ erfüllen.
- > Balmer Formel: $\hbar \omega = \operatorname{Ry} \cdot \left(\frac{1}{n^2} \frac{1}{m^2}\right)$
 - Ry = 13.6 eV, $n, m \dots$ natürliche Zahlen
 - Lyman: n = 1; Balmer: n = 2; Paschen: n = 3; Brackett: n = 4.
 - Balmer Formel ist Spezialfall des Ritz'schen Kombinationsprinzips: Emittierte/absorbierte Photonen entsprechen gerade den Differenzen der stationären Energien.

1. Einführung in die QM; Versagen der klassischen Physik

1.2.e. Stern-Gerlach Versuch (1922)

≻ Kraft auf ein Atom mit magnetischem Moment μ :

$$\mathbf{F} = \mathbf{\nabla} (\boldsymbol{\mu} \cdot \mathbf{B}) \approx \mu_z \frac{\partial B}{\partial z} \mathbf{e}_z, \qquad \mu_z \quad \dots \text{ statistisch verteilt}$$

➤ Experiment: Offenbar sind nur einige wenige Orientierungen des magnetischen Momentes µ erlaubt, eine sogenannte Raumquantelung; Quantisierung des Raumes.

1.2.f. Elektronenbeugung am Doppelspalt

1.3. Aufgaben

Siehe Übungen.

Abbildung 1.1.: Young's double-slit experiment: classical particles vs. waves; cf. Feynman Lectures (1963).

Abbildung 1.2.: Young's double-slit experiment: Quantum particles behave differently; cf. Feynman Lectures (1963).

Doppelspaltexperiment mit Elektronen

A. Tanamura et al., Am. J. Phys. 57 (1989) 117

Richard Feynman (1918-1988)

"...Wir können das Geheimnis (dieses Versuchs) nicht aufdecken, indem wir "erklären" wie es funktioniert. Wir können nur berichten wie es funktioniert, und indem wir dies tun, erörtern wir die grundlegenden Eigentümlichkeiten der ganzen Quantenmechanik."

Abbildung 1.3.: Young's double-slit experiment in practice ... here with electrons and 25 years later after the famous Feynman lectures.

2. Wellenfunktion und Schrödinger-Gleichung (SG)

2.1. SG freier Teilchen

- ► In der QM wird jedem Quant/Quantenobjekt (Elektron, Proton, Atom, Molekül, ...) eine Wellenfunktion (WF) zugeordnet: $\psi(\mathbf{x}, t)$.
- \succ Die WF ist ein Maß für die Wkt., das Teilchen in Raum und Zeit zu finden.
- \succ Gesucht: Theorie, die das Verhalten und die zeitliche Entwicklung der WF $\psi(\mathbf{x}, t)$ beschreibt.
- ➤ Zeitabhängige SG für freie Teilchen
 Schrödingers Wellengleichung (1926)

$$i\hbar \frac{\partial}{\partial t}\psi(\mathbf{x},t) = -\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{x},t) = -\frac{\hbar^2}{2m}\frac{\partial}{\partial \mathbf{x}^2}\psi(\mathbf{x},t) =: H\psi \qquad H \dots$$
 Hamilton operator

Erste Beobachtungen:

- i) Dgl. erster Ordnung in der Zeit und zweiter Ordnung bzgl. der Ortsvariablen
- ii) SG ist linear in $\psi(\mathbf{x}, t)$; daher gilt ein Superpositionsprinzip: Jede Linearkombination von (zwei) Lösungen ist wieder eine Lösung.

- 2. Wellenfunktion und Schrödinger-Gleichung (SG)
- iii) SG ist homogen ; daher gilt:

$$\int_{V} d^{3}x |\psi(\mathbf{x}, t)|^{2} = \text{const.}$$
 Wellenfunktion ist normierbar

iv) Lösungen für freie Teilchen

$$\psi(\mathbf{x},t) = N \exp\left\{\frac{i}{\hbar} \left(\mathbf{p} \cdot \mathbf{x} - \frac{p^2}{2m}t\right)\right\} \qquad \dots \text{ denn}$$
$$i\hbar \frac{\partial}{\partial t} \psi = \frac{p^2}{2m} \psi \quad (\text{lhs}) \qquad | \qquad -\frac{\hbar^2}{2m} \nabla^2 \psi = -\frac{\hbar^2}{2m} \left(\frac{i}{\hbar}\mathbf{p}\right)^2 \psi = \frac{p^2}{2m} \psi \quad (\text{rhs})$$

- Normierung: $\int_V d^3x |\psi(\mathbf{x},t)|^2 = \int_V d^3x N^2 \equiv 1 \quad \rightsquigarrow N = \frac{1}{\sqrt{V}}$
- Wellenpakete: Lokalisierte Zustände folgen aus der Überlagerung ebener Wellen

$$\psi(\mathbf{x},t) = \int \frac{d^3p}{(2\pi\hbar)^3} \,\varphi(\mathbf{p}) \,\exp\left\{\frac{i}{\hbar} \left(\mathbf{p}\cdot\mathbf{x} - \frac{p^2}{2m}t\right)\right\}$$

Einhüllende $\varphi(\mathbf{p})$: Form des Wellenpaketes.

v) Formale 'Herleitung' der SG: gelingt aus klassischer Energie-Impuls Beziehung $E = \frac{\mathbf{p}^2}{2m}$ mittels der Ersetzung:

$$E \longrightarrow i\hbar \frac{\partial}{\partial t}, \qquad \mathbf{p} \longrightarrow -i\hbar \frac{\partial}{\partial \mathbf{x}} \equiv -i\hbar \nabla$$

Bohrsche Korrespondenzen

vi) Wellenfunktion $\psi(\mathbf{x}, t)$ ist allgemein eine skalare, komplexwertige Funktion

2.2. Wahrscheinlichkeitsinterpretation und Kontinuitätsgleichung

2.2.a. Bornsche Wahrscheinlichkeitshypothese und Kopenhagener Interpretation

- i) $\rho(\mathbf{x},t) = |\psi(\mathbf{x},t)|^2$... Betragsquadrat der WF eines Teilchens: beschreibt die Wahrscheinlichkeitsdichte, das Teilchen zum Zeitpunkt t an der Stelle **x** anzutreffen. Oder:
- ii) $\rho(\mathbf{x}, t) d^3x$ ist Wkt., das Teilchen in einem Volumen d^3x am Ort \mathbf{x} und zum Zeitpunkt t zu finden.

Tafelbeispiel (Elektronenstreuung am Doppelspalt):

2.2.b. Kontinuitätsgleichung

 \succ Betrachten zeitliche Änderung der Wahrscheinlichkeitsdichte

$$\frac{\partial}{\partial t}\rho(\mathbf{x},t) = \dot{\psi}^*\psi + \psi^*\dot{\psi} = \frac{1}{-i\hbar} (H\psi^*)\psi + \frac{1}{i\hbar}\psi^* (H\psi) = \frac{\hbar}{2mi} \left[(\nabla^2\psi^*)\psi - \psi^* (\nabla^2\psi) \right] = -\nabla \cdot \mathbf{j}(\mathbf{x},t)$$
$$\frac{\partial}{\partial t}\rho(\mathbf{x},t) + \nabla \cdot \mathbf{j}(\mathbf{x},t) = 0, \qquad \qquad \mathbf{j}(\mathbf{x},t) = \frac{\hbar}{2mi} \left[\psi^* (\nabla\psi) - (\nabla\psi^*)\psi \right]$$

Kontinuitätsgleichung für Wahrscheinlichkeitsdichte

... Wahrscheinlichkeitsstromdichte

2.3. Superposition ebener Wellen; Gaußsche Wellenpakete

Eindimensionale Gaußsche Wellenpakete:

 \succ Lokalisierte Zustände durch Superposition ebener Wellen:

$$\psi(x,t) = \int \frac{dp}{(2\pi\hbar)} \varphi(p) \exp\left\{\frac{i}{\hbar} \left(p \cdot x - \frac{p^2}{2m}t\right)\right\}$$

 \succ Gaußsches Wellenpaket:

$$\varphi(p) = A \exp\left\{-(p - p_o)^2 \frac{d^2}{\hbar^2}\right\}$$

 $\succ \psi(\mathbf{x}, t)$ auswerten und substituieren:

$$a = \frac{d^2}{\hbar^2} + i\frac{t}{2m\hbar}, \qquad b = \frac{d^2p_o}{\hbar^2} + i\frac{x}{2\hbar}, \qquad c = \frac{d^2p_o^2}{\hbar^2}$$
$$\psi(\mathbf{x},t) = \frac{A}{2\pi\hbar} \int dp \exp\left\{-a\left(p - \frac{b}{a}\right)^2 + \frac{b^2}{a} - c\right\} = \frac{A}{2\pi\hbar} \sqrt{\frac{\pi}{a}} \exp\left\{\frac{b^2}{a} - c\right\}$$

 \succ Für die Wahrscheinlichkeitsdichte gilt:

$$\begin{aligned} |\psi(\mathbf{x},t)|^2 &= \left(\frac{A}{2\pi\hbar}\right)^2 \frac{\pi}{|a|} \exp\left\{2\Re\left(\frac{b^2 - ac}{a}\right)\right\} & \text{siehe Uebung;} \quad v = \frac{p_o}{m}; \quad \Delta = \frac{t\hbar}{2md^2} \\ &= : \\ &= \frac{1}{d\sqrt{2\pi(1+\Delta^2)}} \exp\left\{-\frac{(x-vt)^2}{2d^2(1+\Delta^2)}\right\} \end{aligned}$$

Gaußverteilung im Impulsraum $\leftrightarrow \rightarrow$ Gaußverteilung im Ortsraum d.h. ...

\succ Ausbreitung des Wellenpaketes:

- Maximum: bewegt sich mit Gruppengeschwindigkeit $v_g = \frac{\partial E}{\partial p}|_{p_o} = \frac{p_o}{m} = v$... analog zu einem klass. Teilchen
- Einzelne ebene Wellen: mit Phasengeschwindigkeit v_{ph} = ^{E_p}/_p = ^p/_{2m}
 Breite: Δ = th/_{2md²} wächst mit der Zeit an, d.h. |ψ(**x**, t)|² wird breiter bzw. fließt auseinander.

Charakeristische Eigenschaften von gm. Wellenpaketen

Beispiel (Makroskopische Masse): $m = 10^{-3}$ kg, $d = 10^{-10}$ m

$$\Delta \; = \; \frac{t\hbar}{2m\,d^2} \; \approx \; \frac{10^{-34}\,\mathrm{kg\,m}\cdot t}{10^{-3}\,\mathrm{kg\,s}\cdot 10^{-20}\,m^2} \; \stackrel{!}{=} \; 1 \qquad \rightsquigarrow \quad t \; \approx \; 10^{11}\,s$$

d.h. erst nach etwa 10¹¹ s ist die Ortsunschärfe $\Delta x \sim \sqrt{2}d \approx 1.4 \cdot 10^{-10}$ m erreicht; für makroskopische Massen ist Ortsunschärfe vollkommen irrelevant.

Beispiel (Ortsunschärfe eines α -Teichens): $m = 10^{-27}$ kg, $d = 10^{-10}$ m

2. Wellenfunktion und Schrödinger-Gleichung (SG)

 $\Delta \stackrel{!}{=} 1 \qquad \rightsquigarrow \quad t \approx 10^{-13} s$

- Wellenpakete mikroskopischer Teilchen laufen in viel kürzeren Zeiten auseinander.
- Dennoch: Problemabhängig, inwieweit dieses Auseinanderlaufen physikalisch bedeutsam ist:

2.4. Einschub: Operatoren und Skalarprodukte

Allgemeine Voraussetzung: Raum der quadrat-integrablen Funktionen L^2

Wichtige Definitionen:

a) Linearer Operator A: ist eine Abbildung, die (jedem) $\psi(\mathbf{x}) \in L^2 \longrightarrow (A \psi(\mathbf{x})) = \phi(\mathbf{x}) \in L^2$ eindeutig zuordnet.

Beispiele:

- Multiplikation mit Konstanten $3 \psi(\mathbf{x}), c \psi(\mathbf{x})$
- Differential operatoren $\frac{\partial}{\partial x}\psi, -\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{x},\mathbf{t})$
- Integral operatoren $\int_V d^3x' K(\mathbf{x}, \mathbf{x}') \psi(\mathbf{x}', t) \longrightarrow \phi(\mathbf{x}', t)$
- Aber <u>nicht</u>: $A \psi = \psi^2 + \frac{\partial}{\partial x_3} \psi$ nichtlinear
- **b)** A heißt linearer Operator, wenn für alle $\psi_1, \psi_2 \in \mathbb{L}^2$ und $c_1, c_2 \in \mathbb{C}$ gilt:

$$A (c_1 \psi_1 + c_2 \psi_2) = c_1 A \psi_1 + c_2 A \psi_2$$

Beispiele: $x_i, \frac{\partial}{\partial x_i}, \nabla^2, f(\mathbf{x}, \mathbf{t})$... als Multiplikationsoperator.

- c) Eigenschaften linearer Operator: A und B seien lineare Operatoren, dann führen folgende Verknüpfungen wieder auf lineare Operatoren:
 - Multiplikation mit komplexer Zahl: $cA\psi = c(A\psi)$
 - Summe zweier Operatoren: $(A+B)\psi = A\psi + B\psi$
 - Produkt zweier Operatoren: $(AB)\psi = A(B\psi)$
 - Einheitsoperator: $\hat{1}\psi = \psi$
 - Nulloperator: $\hat{0}\psi = 0$
 - $A\hat{1} = \hat{1}A = A$, $A\hat{0} = \hat{0}A = 0$

Jedoch: Operatoren sind allgemein **nicht** kommutativ ! $AB \neq BA \iff AB\psi \neq BA\psi$ **d)** Sind A und B zwei lineare Operatoren, dann heißt

 $[A, B] := AB - BA \qquad \dots \text{Kommutator von A und B}$ $\{A, B\} := AB + BA \qquad \dots \text{Antikommutator}$

Zwei Operatoren kommutieren miteinander \iff [A, B] = 0

Andere Sprechweise: A und B kommutieren bzw. vertauschen miteinander.

Beispiele:

2. Wellenfunktion und Schrödinger-Gleichung (SG)

1)
$$[x_i, \frac{\partial}{\partial x_j}]\psi = \left(x_i\frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j}x_i\right)\psi = -\delta_{ij}\psi \implies [x_i, \frac{\partial}{\partial x_j}] = -\delta_{ij}$$

2) $[x_i, x_j]\psi = (x_ix_j - x_jx_i) = 0$
3) $[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}]\psi = \left(\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j}\frac{\partial}{\partial x_i}\right)\psi = 0$
4) $[f(\mathbf{x}), \frac{\partial}{\partial x_j}]\psi = f\frac{\partial}{\partial x_j}\psi - f\frac{\partial}{\partial x_j}\psi - \frac{\partial f}{\partial x_j}\psi \implies [f(\mathbf{x}), \frac{\partial}{\partial x_j}] = -\frac{\partial f}{\partial x_j}$

e) Vertauschungsregeln der Orts- und Impulsoperatoren

$$[x_i, x_j] = [p_i, p_j] = \left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right] = 0, \qquad [x_i, -i\hbar\partial_j] = i\hbar\,\delta_{ij}$$

kanonische Vertauschungsrelationen

 $x_j, p_j = -i\hbar \frac{\partial}{\partial x_j}$ heißen auch kanonisch-konjungierte Variablen.

f) Skalar
produkt $\langle \psi \mid \phi \rangle$: heißt das Integral

$$\langle \psi \mid \phi \rangle := \int d^3x \, \psi^*(\mathbf{x}) \phi(\mathbf{x})$$

Eigenschaften:

$$\begin{aligned} \langle \psi \mid \phi \rangle &= \langle \phi \mid \psi \rangle^* \\ \langle \psi \mid (c_1 \phi_1 + c_2 \phi_2) \rangle &= c_1 \langle \phi \mid \psi_1 \rangle + c_2 \langle \phi \mid \psi_2 \rangle, & \langle (c_1 \psi_1 + c_2 \psi_2) \mid \phi \rangle = c_1^* \langle \psi \mid \phi_1 \rangle + c_2^* \langle \psi \mid \phi_2 \rangle \\ \langle \psi \mid \psi \rangle &\ge 0, & \langle \psi \mid \psi \rangle = 0 \iff \psi \equiv 0 \\ \langle \psi \mid A \phi \rangle &= \int d^3 x \, \psi^*(\mathbf{x}) A \, \phi(\mathbf{x}) \end{aligned}$$

g) A^+ heiß der zu A adjungierte Operator, wenn für alle $\phi, \psi \in L^2$ gilt:

$$\begin{array}{lll} \left\langle A^{+}\psi \mid \phi \right\rangle &=& \left\langle \psi \mid A\phi \right\rangle & \forall \,\psi, \,\phi \\ \\ &\Longrightarrow & \left\langle \psi \mid AB\phi \right\rangle = \left\langle A^{+}\psi \mid B\phi \right\rangle = \left\langle B^{+}A^{+}\psi \mid \phi \right\rangle = \left\langle (AB)^{+}\psi \mid \phi \right\rangle \\ \end{array}$$

Ein Operator heißt hermitesch (bzw. selbstadjungiert), wenn gilt: $A^+ = A$.

h) Nützliche Identitäten für Operatoren:

$$[AB, C] = A[B, C] + [A, C]B$$

$$[A, B]^{+} = (AB - BA)^{+} = (AB)^{+} - (BA)^{+} = B^{+}A^{+} - A^{+}B^{+} = [B^{+}, A^{+}]$$

$$e^{A} B e^{-A} = B + [A, B] + \frac{1}{2}[A, [A, B]] + \dots \qquad \text{Baker - Hausdorff - Identitaet} \qquad \text{mit}$$

$$e^{A} = \sum_{n=0}^{\infty} \frac{1}{n!} A^{n}$$

2.5. Korrespondenzprinzip der QM

Korrespondenzprinzip:

- (i) Jeder physikalischen Größe wird in der QM ein Operator zugeordnet (Meßgrößen sogar hermitesche Operatoren: $A^+ = A$)
- (ii) Mit den Korrespondenzen $E \to i\hbar \frac{\partial}{\partial t}$, $\mathbf{p} \to -i\hbar \frac{\partial}{\partial \mathbf{r}}$ können die bekannten 'klassischen' Beziehungen (oftmals) auf die QM übertragen werden.
- \succ Betrachten klassisches Teilchen in einem Potenzial:

$$E = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x}) = H(\mathbf{p}, \mathbf{q}) \qquad \dots \text{Hamilton} - \text{Funktion}$$
$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x})\right) \psi(\mathbf{x}, t) = H \psi(\mathbf{x}, t) \qquad \dots \text{Hamiltonoperator}$$
$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = H \psi(\mathbf{x}, t) \qquad \text{Zeitabhängige SG in einem äußeren Potenzial } V(\mathbf{x})$$

 \succ Mehrteilchensysteme:

$$E = \frac{\mathbf{p}_1^2}{2m_1} + \frac{\mathbf{p}_2^2}{2m_2} + \dots + \frac{\mathbf{p}_N^2}{2m_N} + V(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$$

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N) = \left\{ -i\hbar \nabla_1^2 - i\hbar \nabla_2^2 - ... - i\hbar \nabla_N^2 + V(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N) \right\} \psi = \left(\sum_k \frac{\mathbf{p}_k^2}{2m_k} + V \right) \psi$$

(zeitabhängige) Vielteilchen-SG für ein konservatives N-Teilchensystem

≻ Anmerkungen:

- Struktur der Gleichung bleibt weitgehend erhalten.
- Herausforderung: Komplexität der Gleichung; WF $\psi(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$ hängt von 3N Koordinaten ab.

2.6. Postulate der QM

(i) Der Zustand eines Systems wird durch die WF $\psi(\mathbf{x},t) \in \mathcal{H}$ mit $\langle \psi | \psi \rangle = ||\psi|| = 1$ beschrieben. $|\psi(\mathbf{x},t)|^2 d^3x$ gibt die Wkt. an, das Teilchen zur Zeit t am Ort \mathbf{x} in einem Volumenelement d^3x zu finden.

(ii) Die zeitliche Entwicklung eines Zustandes folgt – ohne WW mit einem klassischen System – der SG:

$$i\hbar \frac{\partial}{\partial t}\psi(\mathbf{x},t) = H\psi(\mathbf{x},t) \qquad \qquad H = -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x})$$

SG mit Hamiltonoperator

(iii) Jeder physikalischen Meßgröße (Observable, dynamische Variable) kann ein hermitescher Operator A zugeordnet werden. Funktionen von Observablen werden entsprechend auch Funktionen von Operatoren zugeordnet.

2. Wellenfunktion und Schrödinger-Gleichung (SG)

a)

Messgroess	e	Operator
Impuls	р	$\hat{\mathbf{p}} = -i\hbar \frac{\partial}{\partial \mathbf{r}}$
Ort	x	Ŷ.

Hamiltonfunktion in einem Potenzial

Hamiltonoperator

$$H(\mathbf{p}, \mathbf{x}) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x}) \qquad \qquad H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x})$$

b) Bei einer Messung der Observablen A wird stets ein Eigenwert a_m des entsprechenden Operators \hat{A} gemessen. Gleichzeitig: geht die WF $\psi(\mathbf{x}, t_o) \longrightarrow \psi_m(\mathbf{x}, t_o)$ in die entsprechende EF über. Reduktion bzw. Kollaps der WF

c) Der Erwartungswert (= Mittelwert) einer Observablen A im Zustand ψ berechnet sich mit: $\langle A \rangle = \langle \psi | A \psi \rangle$

(iv) Zusammengesetzte Quantensysteme (z.B. Vielteilchensysteme): $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes ... \otimes \mathcal{H}_N$ Vielteilchensysteme, Spin- und innere FG, ... QM II, allgemein $\psi(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}) \neq \psi(\mathbf{x_1} \otimes \psi(\mathbf{x_2} \otimes ...$

Anmerkungen:

- \succ Observablen (Meßgröße) \longleftrightarrow hermitescher Operator.
- ➤ Sprechweise: Observable A meint oftmals auch den zugehörigen Operator – Mittelwert eines Operators meint auch Skalarprodukt $\langle \psi | A \psi \rangle \equiv \langle \psi | A | \psi \rangle$ bzgl. eines gegeben Zustandes $|\psi\rangle$.

➤ Fourierdarstellung eines Zustandes:

$$\psi(\mathbf{x}) = \sum_{m} c_{m} \psi_{m}(\mathbf{x}) = \sum_{m} \psi_{m}(\mathbf{x}) \langle \psi_{m} | \psi \rangle$$

► Normierung:

$$\langle \psi \mid \psi \rangle = 1 = \left\langle \sum_{m} c_{m} \psi_{m}(\mathbf{x}) \mid \sum_{m} c_{m} \psi_{m}(\mathbf{x}) \right\rangle = \sum_{mn} c_{m}^{*} c_{n} \langle \psi_{m} \mid \psi_{n} \rangle = \sum_{m} |c_{m}|^{2}$$

► Erwartungswert:

$$\left\langle \psi \mid A \psi \right\rangle = \left\langle \sum_{m} c_{m} \psi_{m} \mid A \left(\sum_{n} c_{n} \psi_{n} \right) \right\rangle = \sum_{mn} c_{m}^{*} c_{n} \left\langle \psi_{m} \mid A \psi_{n} \right\rangle = \sum_{mn} c_{m}^{*} c_{n} a_{n} \underbrace{\left\langle \psi_{m} \mid \psi_{n} \right\rangle}_{\delta_{mn}} = \sum_{m} |c_{m}|^{2} a_{m}$$

 \succ

 $|c_m|^2 = |\langle \psi_m | \psi \rangle|^2$

Wkt., bei einer Messung den Wert a_m zu erhalten.

► Eigenwerte:

 $a_m \dots$ mögliche Meßwerte

Entwicklungskoeffizienten:

 $c_m = \langle \psi_m | \psi \rangle$... Wahrscheinlichkeitsamplituden $|c_m|^2 = c_m^* c_m = \langle \psi_m | \psi \rangle \langle \psi | \psi_m \rangle$... Wkt.

- 2. Wellenfunktion und Schrödinger-Gleichung (SG)
 - \succ Eigenfunktionen zum Ortsoperator x:

$$\hat{x} \psi_o(x) = x_o \psi_o(x) \qquad \Longleftrightarrow \qquad \hat{x} \delta(x - x_o) = x_o \delta(x - x_o)$$
$$\langle \psi_o | x \psi_o \rangle = \int dx \, \delta(x - x_o)^* \, x \, \delta(x - x_o) = x_o$$
$$c_o = \langle \psi_o | \psi \rangle = \int dx \, \delta(x - x_o)^* \, \psi(x) = \psi(x_o)$$

➤ Daraus folgt wieder, daß $|c_o|^2 dx = |\psi(x_o)|^2 dx$ die Wkt. bezeichnet, das Teilchen an der Position x_o im kleinen Intervall dx zu finden.

2.7. Einschub: Eigenwertgleichungen

 $A \psi = a \psi$

Für alle hermiteschen Operatoren gilt: $A^+ = A$

i) Alle Eigenwerte hermitescher Operatoren sind stets reell:

$$\langle \psi_m \mid A \psi_m \rangle = \langle \psi_m \mid a_m \psi_m \rangle = a_m \langle \psi_m \mid \psi_m \rangle$$

$$\langle A \psi_m \mid \psi_m \rangle = \langle a_m \psi_m \mid \psi_m \rangle = a_m^* \langle \psi_m \mid \psi_m \rangle$$

$$\underbrace{ \langle \psi_m \mid A \psi_m \rangle - \langle A \psi_m \mid \psi_m \rangle}_{\text{hermitesch}} = 0 = \underbrace{ (a_m - a_m^*)}_{>0} = 0 \underbrace{ \langle \psi_m \mid \psi_m \rangle}_{>0}$$

Da allen physikalischen Meßgrößen hermitsche Operatoren zugeordnet werden; sind damit auch alle Meßwerte reell.

Beispiele: H, \mathbf{p} , \mathbf{x} ... sind hermitesch.

ii) Eigenfunktionen zu verschiedenen Eigenwerten sind stets zueinander orthogonal:

$$A \psi_{m} = a_{m} \psi_{m}, \qquad A \psi_{n} = a_{n} \psi_{n}$$

$$\langle \psi_{m} | A \psi_{n} \rangle - \langle A \psi_{m} | \psi_{n} \rangle = \underbrace{(a_{n} - a_{m})}_{\neq 0} \langle \psi_{m} | \psi_{n} \rangle = 0 \qquad \rightsquigarrow \qquad \langle \psi_{m} | \psi_{n} \rangle = 0 \quad \text{bzw.} \quad \psi_{m} \perp \psi_{n}$$

- 2. Wellenfunktion und Schrödinger-Gleichung (SG)
- Ferner können (o.B.) die EF hermitscher Operatoren zum gleichen EW (im Falle einer Entartung) stets orthogonal gewählt werden. Oder allgemeiner:

Alle EF hermitscher Operatoren sind zueinander orthogonal bzw. können so gewählt werden.

iii) Eigenfunktionen der hermiteschen Operatoren erfüllen eine Vollständigkeitsrelation:

Fourierdarstellung eines Zustandes

2.8. Stationäre Lösungen der SG

≻ Oftmals ist der Hamiltonoperator zeitunabhängig: $H \neq H(t)$, d.h. eine Separation der Variablen ist möglich:

$$\psi(\mathbf{x},t) = T(t) \ \psi'(\mathbf{x}) \longrightarrow H \neq H(t) \longrightarrow \frac{i\hbar \frac{\partial}{\partial t} T(t)}{T(t)} = \frac{H \ \psi'(\mathbf{x})}{\psi'(\mathbf{x})} = E \qquad \dots \text{ Separations variable}$$

i) $i\hbar \frac{\partial}{\partial t} T(t) = E T(t) \qquad \rightsquigarrow \quad \text{Lösung:} \quad T(t) = e^{-i/\hbar Et}$

ii) $H\psi(\mathbf{x}) = E\psi(\mathbf{x})$... zeitunabhängige bzw. stationäre SG
Anmerkungen:

- \succ Gilt für jedes beliebige, abgeschlossene qm. System
- \succ Noch immer (sehr) kompliziert
- ➤ Gesamtlösungen: $\psi(\mathbf{x}, t) = e^{-\frac{i}{\hbar}Et} \psi(\mathbf{x})$ heißen stationäre Zustände, da die Wahrscheinlichkeitsdichte $|\psi(\mathbf{x}, \mathbf{t})|^2 = |\psi'(\mathbf{x})|^2$ selbst zeitunabhängig ist.
- ≻ Forderung der Normierbarkeit $\int d^3x |\psi(\mathbf{x}, \mathbf{t})|^2 < \infty$ schränkt die möglichen Werte der Energie ein.

2.9. Zur Interpretation der EW physikalischer Operatoren

Wahrscheinlichkeitstheorie

i) *n*-tes Moment der Verteilung w(x):

$$m_n = \int_{-\infty}^{\infty} dx \ x^n \ w(x) =: \langle n \rangle$$

ii) Charakteristische Funktion: ... $\chi(\tau)$ ist die Fouriertransformierte von w(x) und umgekehrt.

$$\chi(\tau) = \int_{-\infty}^{\infty} dx \ w(x) \ e^{-ix\tau} \qquad \Longleftrightarrow \qquad w(x) = \int_{-\infty}^{\infty} \frac{d\tau}{2\pi} \ \chi(\tau) \ e^{ix\tau}$$

2. Wellenfunktion und Schrödinger-Gleichung (SG)

Wir können ferner schreiben:

$$\chi(\tau) = \int_{-\infty}^{\infty} dx \ w(x) \ \sum_{n=0} \ \frac{(-i)^n}{n!} \ x^n \ \tau^n = \sum_{n=0} \ \frac{(-i)^n}{n!} \ \tau^n \ m_n$$

d.h. Kenntnis aller Momente $\{m_n\} \longrightarrow \chi(\tau) \longrightarrow w(x)$ liefert Wktsverteilung.

a) Anwendung auf ein physikalisches System, das sich im (Eigen-) Zustand ψ_m eines Operators A befindet:

$$\begin{array}{lll} \langle A^n \rangle &=& \langle \psi_m \,|\, A^n \,\psi_m \rangle \,=\, (a_m)^n \\ \chi(\tau) &=& \sum_{n=0} \,\frac{(-i)^n}{n!} \,\tau^n \,(a_m)^n \,=\, e^{-i\,\tau\,a_m} \end{array} \right\} \quad w(a) \,=\; \int \frac{d\tau}{2\pi} \,e^{ia\tau} \,e^{-ia_m\tau} \,=\; \int \frac{d\tau}{2\pi} \,e^{i\tau\,(a-a_m)} \,=\, \delta(a \,-\, a_m) \end{array}$$

... ist die Wahrscheinlichkeitsverteilung, dass eine Messung der Observablen A einen Wert a liefert; $w(a) da \dots$ Wkt. für [a, a + da]. ... Oder in anderen Worten: Es wird gerade der Wert a_m gemessen.

b) System befindet sich im allgemeinen Zustand $\psi = \sum_m c_m \, \psi_m$:

$$\langle A^{n} \rangle = \left\langle \sum_{m} c_{m} \psi_{m} | A^{n} (\sum_{p} c_{p} \psi_{p}) \right\rangle = \sum_{mp} c_{m}^{*} c_{p} \langle \psi_{m} | A^{n} \psi_{p} \rangle = \sum_{mp} c_{m}^{*} c_{p} (a_{p})^{n} \delta_{mp} = \sum_{m} |c_{m}|^{2} (a_{m})^{n} \\ \chi(\tau) = \sum_{mn} \frac{(-i)^{n}}{n!} \tau^{n} (a_{m})^{n} |c_{m}|^{2} = \sum_{m} |c_{m}|^{2} e^{-ia_{m}\tau} \\ w(a) = \sum_{m} |c_{m}|^{2} \delta(a - a_{m})$$

d.h. es wird stets einer der EW von A gemessen, wobei die zugehörigen Wkt. $|c_m|^2$ ist.

Wahrscheinlichkeitsverteilung der erhalten Meßwerte ist konsistent mit der 'klassischen Wahrscheinlichkeitstheorie' von Zufallsgrößen, wenn die Erwartungswerte $\langle A \rangle$, $\langle A^2 \rangle$, ..., $\langle A^n \rangle$ als die Momente der Verteilung interpretiert werden.

c) In welchem Zustand ist das System nach der Messung? Ideale Messung: Wellenfunktion ist nach der Messung bekannt und wird nicht in unkontrollierter Weise verändert. Nach einer idealen Messung befindet sich das System in einer EF des zugehörigen Operators.

d) Operatoren mit kontinuierlichem Spektrum:

$$\psi(x) = \sum_{n} c_n \psi_n(x) + \int da c(a) \psi_a(x) = \sum c_n \psi_n(x)$$

Es können auch hierfür Momente $\langle A^n \rangle$, $\chi(\tau)$... ausgerechnet werden

$$w(a) = \sum_{n} |c_n|^2 \, \delta(a - a_n) + |c(a)|^2$$

2.10. Aufgaben

Siehe Übungen.

3.1. Unendlicher Potenzialtopf

 \succ Potenzial:

$$V(x) = \begin{cases} 0 & -a \le x \le a \\ \infty & |x| > a \end{cases}$$

≻ Gesucht: Lösung der zeitunabhängigen, stationären SG; d.h. die Wkt., das Teilchen am Ort x in [x, x + dx] zu finden.

 \succ SG:

$$H \psi(x) = E \psi(x) = \left\{ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right\} \psi(x)$$

≻ (Fundamental-) Lösungen für $\psi(x)$: $-a \leq x \leq a$; V = 0

$$\left(\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + E\right)\psi = 0 \qquad \qquad \rightsquigarrow \qquad \psi(x) \propto \sin kx, \ \cos kx$$

i) $\psi(x) = A \cos kx + B \sin kx$, *A*, *B*...Konstanten; $k = \sqrt{\frac{2mE}{\hbar^2}}$ (Beweis!)

ii) $|x| > a, V(x) = \infty$ außerhalb, d.h. SG kann nur für $\psi(x) = 0$ erfüllt werden.

➤ Randbedingungen und Forderungen an $\psi(x)$:

- Stetige Funktion des Ortes (und der Zeit)
- $\int_{-\infty}^{\infty} dx \, |\psi(x)|^2 < \infty$ Normierbarkeit !
- $\psi' = \frac{d\psi}{dx}$ muß ebenfalls stetig sein, außer bei unendlichen Sprüngen.

≻ Stetigkeit von $\psi(x)$:

$$x = a: \qquad A \cos ka + B \sin ka = 0 \\ x = -a: \qquad A \cos ka - B \sin ka = 0 \end{cases}$$

$$B = 0: \qquad \cos ka = 0 \iff k = \frac{n\pi}{2a}, \quad n = 1, 3, 5, \dots \\ A = 0: \qquad \sin ka = 0 \iff k = \frac{n\pi}{2a}, \quad n = 2, 4, 6, \dots$$

$$k^2 = \frac{n^2 \pi^2}{4 a^2} = \frac{2m E}{\hbar^2} \qquad \qquad \longrightarrow \qquad E = \frac{n^2 \pi^2 \hbar^2}{8 a^2 m}$$

Erlaubte Energien treten diskretisiert auf.

$$n = 1, 3, 5 \dots \quad A^2 \int_{-a}^{a} dx \, \cos^2 \frac{n\pi}{2a} x = A^2 a = 1 \qquad \qquad \rightsquigarrow A = \frac{1}{\sqrt{a}}$$
$$n = 2, 4, 6 \dots \quad B^2 \int_{-a}^{a} dx \, \sin^2 \frac{n\pi}{2a} x = B^2 a = 1 \qquad \qquad \rightsquigarrow B = \frac{1}{\sqrt{a}}$$

≻ Stationäre Lösungen:

Beobachtungen:

- \succ Energien treten diskretisiert auf;
- \succ WF $\psi(x)$ ist entweder
 - symmetrisch: $\psi_n(x) = +\psi_n(-x)$ n = ungerade
 - antisymmetrisch: $\psi_n(x) = -\psi_n(-x)$ n = gerade;

dies gilt allgemein, wenn Potenzial V(x) = V(-x) symmetrisch ist.

- ≻ Wahrscheinlichkeitsdichte $|\psi_n(x)|^2$ hat Bäuche und Knoten.
- $\succ \psi_1(x)$ (bzw. kleinstes n) heißt Grundzustand; Grundzustands-WF besitzen keine Knoten.

Beispiel (Zwei Abschätzungen:):

- i) Stark vereinfachtes Atommodell: $m_e \approx 10^{-30} \text{ kg}, a \approx 10^{-10} \text{ m} \quad \rightsquigarrow$ $E_n \approx 1.5 \cdot 10^{-18} n^2 \text{ Ws}, \quad E_2 - E_1 \approx 4.5 \cdot 10^{-18} \text{ Ws} \approx 30 eV$
- ii) Staubkorn: $m_e \approx 10^{-10} \text{ kg}, a \approx 10^{-6} \text{ m} = 1 \,\mu m \quad \rightsquigarrow \quad E_n \approx 1.4 \cdot 10^{-46} \,n^2 \text{ Ws}$

3.2. Endlicher Potenzialtopf

 \succ Gemeins am mit

$$k = \sqrt{\frac{2mE}{\hbar^2}}, \qquad \qquad \kappa = \sqrt{\frac{2m(V_o - E)}{\hbar^2}}$$

sind damit die Energieeigenwerte (Energieniveaus) und die zugehörigen WF eindeutig festgelegt; siehe Bilder ... übernommen aus http://hydrogen.physik.uni-wuppertal.de/hyperphysics/

 \succ Lösungen ... siehe Lehrbücher.

3.3. Potenzialstufe

► Anschlußbedingungen:

$$\psi_{\mathrm{I}}(a) = \psi_{\mathrm{II}}(a) \qquad \longleftrightarrow \qquad \frac{\psi'_{\mathrm{I}}(a)}{\psi_{\mathrm{I}}(a)} = \frac{\psi'_{\mathrm{II}}(a)}{\psi_{\mathrm{II}}(a)}$$

Stetigkeit der logarithmischen Ableitung

 \succ Diese Argumente sind allerdings ungültig, wenn das Potenzial selbst δ-förmig ist

Ebene Potenzialstufe:

 \succ Potenzial:

$$V(x) = V_o \Theta(x) = \begin{cases} 0 & x < a \\ V_o & x > 0 \end{cases}$$

 \succ SG in beiden Bereichen:

I)
$$\frac{\partial^2 \psi}{\partial x^2} - \frac{2m E}{\hbar^2} \psi$$
II)
$$\frac{\partial^2 \psi}{\partial x^2} - \frac{2m (E - V_o)}{\hbar^2} \psi$$

3.3.a. Teilchenenergie oberhalb der Potenzialstufe

 \succ SG:

I)
$$\psi'' + k^2 \psi = 0,$$
 $k = \sqrt{\frac{2mE}{\hbar^2}}$
II) $\psi'' + q^2 \psi = 0,$ $q = \sqrt{\frac{2m(E - V_o)}{\hbar^2}}$

 \succ Zwei Schwingungsgleichungen mit den Fundamentallösungen:

$$e^{iKx}, e^{-iKx}, \qquad K = \begin{cases} k & x < 0 \\ q & x > 0 \end{cases}$$

 \succ Einfallendes Teilchen von 'links' mit normierter Amplitude e^{ikx}

 $\psi_{\rm I} = e^{ikx} + R e^{-ikx}$... Reflexion $\psi_{\rm II} = T e^{iqx}$... Transmission

 $\psi(x) = \Theta(-x) \psi_{\rm I} + \Theta(x) \psi_{\rm II}$

 $R\,$ und $\,T\,$ folgen aus Anschlußbedingungen bei $\,x\,=\,0\,$

$$1 + R = T \quad \iff \quad R = \frac{k - q}{k + q}$$
$$ik (1 - R) = iq T \qquad \qquad T = \frac{2k}{k + q}$$
$$\psi(x) = \qquad \Theta(-x) e^{ikx} + \Theta(-x) \frac{k - q}{k + q} e^{-ikx} + \Theta(x) \frac{2k}{k + q} e^{iqx}$$

 \succ Wahrscheinlichkeitsstromdichte:

$$\begin{aligned} j(x,t) &= \frac{\hbar}{2m\,i} \left[\psi^* \,\psi' - \psi^{*'} \,\psi \right] \\ j_{\rm I}(x) &= \frac{\hbar}{2m\,i} \left[(e^{-ikx} + R^* \,e^{ikx}) \,ik \,(e^{ikx} - R \,e^{-ikx}) - {\rm c.c.} \right] \\ &= \frac{\hbar}{2m\,i} \left[ik \,\left(1 - |R|^2 - R \,e^{-2ikx} + R^* \,e^{2ikx} \right) - {\rm c.c.} \right] \\ &= \frac{\hbar k}{m} \left(1 - |R|^2 \right) \equiv j_{\rm einlaufend} - j_{\rm reflectient} \\ j_{\rm II}(x) &= \frac{\hbar q}{m} \,|T|^2 \equiv j_{\rm transmittient} \end{aligned}$$

> Reflexions- und Transmissionskoeffizienten r und t:

$$r = \frac{j_{\text{reflekt.}}}{j_{\text{ein}}} = |R|^2;$$
 $t = \frac{j_{\text{transm.}}}{j_{\text{ein}}} = \frac{q}{k} |T|^2$

Anmerkungen:

- \succ Teilchen wird mit Wahrscheinlichkeit r reflektiert; klassisch tritt keine Reflexion auf Reflexion ist ein Wellenphänomen, analog zur Lichtreflexion an Grenzflächen mit verschiedenen Brechungsindizes.
- \succ Grenzfall: $E \gg V_o, \quad E \to \infty$

$$q \rightarrow k: \quad R \rightarrow 0, \quad T \rightarrow 1$$

Reflexion verschwindet asymptotisch.

 \succ Erhaltung der Teilchenzahl:

$$j_{I} = \frac{\hbar k}{m} \left(1 - |R|^{2} \right) = \frac{\hbar k}{m} \frac{4k^{2}}{(k+q)^{2}} = \frac{\hbar q}{m} |T|^{2} = j_{II} \quad \rightsquigarrow \quad j_{\text{ein}} = j_{\text{reflek}} + j_{\text{trans}}$$
$$\frac{\partial \rho}{\partial t} + \frac{\partial j}{\partial x} = \frac{\partial j}{\partial x} = 0 \quad \rightsquigarrow \quad j = \text{const.}$$

Bilder: siehe http://www.physik.uni-ulm.de/lehre/ap-2012/

3.3.b. Teilchenenergie kleiner als Potenzialstufe, $E < V_o$

... siehe Übungen.

Grenzfall: Unendlich hohe Schwelle, $V_o \rightarrow \infty$... siehe Übungen.

 $\kappa \to \infty, \qquad T = 0, \qquad R = -1 \qquad \Longrightarrow \qquad \psi_I(x) = e^{ikx} - e^{-ikx} \qquad \Longrightarrow \qquad \psi_I(0) = 0$

dies entspricht der allgemeinen RB einer unendlich hohen Schwelle: $\psi|_{\text{Schwelle}} = 0$

3.4. Quantenmechanisches Tunneln (Tunneleffekt)

Qualitative Diskussion

i) Lösungen für $E \ll V_1$; Oszillationen im erlaubten Bereich

ii) Lösungen für $V_1 < E < V_2$

- zentraler Bereich: sinusförmige Lösungen mit $k = \sqrt{2m E/\hbar^2}$
- klassisch verbotener Bereich: exponentielles Abklingen
- |x| > b: erneut sinusförmig, jedoch mit kleinerem $k' = \sqrt{2m (E V_1)/\hbar^2}$

Tunnel-Effekt: Quantenmechanische Teilchen können Potenzialbarierren durchtunneln.

Transmissionsamplituden und Tunnelwahrscheinlichkeiten

- ➢ Sei T(E) die Transmissionsamplitude f
 ür das Durchdringen eines Potenzialberges, dann kennzeichnet $|T(E)|^2$... Tunnelwahrscheinlichkeit
- \succ Tunnelwahrscheinlichkeit für Potenzialstufe

$$|T(E)|^2 \simeq \exp\left\{-4\sqrt{2m\left(V_o - E\right)}\frac{a}{\hbar}\right\}$$

 \succ Tunnelwahrscheinlichkeit für kontinuierliche Potenzialberge

$$|T(E)|^{2} = \prod_{i=1}^{N} \exp\left\{-\frac{2dx}{\hbar}\sqrt{2m\left(V(x_{i})-E\right)}\right\} = \exp\left\{-2\sum_{i=1}^{N}\frac{dx}{\hbar}\sqrt{2m\left(V(x_{i})-E\right)}\right\}$$
$$= \exp\left\{-2\int_{a}^{b}\frac{dx}{\hbar}\sqrt{2m\left(V(x)-E\right)}\right\} \qquad \text{fuer } N \to \infty$$

Dieses Ergebnis kann auch mit der WKB-Methode gewonnen werden.

3.4.a. α -Zerfall instabiler Kerne

 α -Teilchen: $2p \oplus 2n$

- \succ Reichweite der Kernkraft: 10⁻¹⁴ m, Z_T … Kernladung des Tochterkerns, $Z_{\alpha}=2$
- ➤ Integration der Tunnelwahrscheinlichkeit $a = R, \quad b = \frac{Z_T Z_\alpha e^2}{E}$

Bild von: https://de.wikipedia.org/wiki/Alphastrahlung

 \succ Wir berechnen Integral:

$$2\int_{a}^{b} \frac{dx}{\hbar} \sqrt{2m \left[V(x) - E\right]} = 2\frac{\sqrt{2mE}}{\hbar} \int_{a}^{b} dx \sqrt{\frac{b}{x} - 1} = 2b\frac{\sqrt{2mE}}{\hbar} \left[\arccos\sqrt{\frac{R}{b}} - \left(\frac{R}{b} - \left(\frac{R}{b}\right)^{2}\right)^{1/2}\right]$$
$$|T(E)|^{2} \simeq \exp\left\{-\pi \frac{\sqrt{2m}Z_{\alpha}e^{2}}{\hbar} \left(\frac{Z_{T}}{\sqrt{E}} - \frac{4}{\pi}\sqrt{\frac{Z_{T}R}{Z_{\alpha}e^{2}}}\right)\right\}$$

≻ Zerfallswahrscheinlichkeit pro Sekunde $= \frac{v_i}{2R} \cdot |T(E)|^2$

 \succ Zerfallsgesetz:

 $dN = -N \cdot \frac{\text{Zerfallswkt.}}{\text{Sekunde}} dt = -\frac{N}{\tau} dt \qquad \tau \dots \text{ mittlere Lebensdauer} \qquad N(t) = N_o e^{-t/\tau}$ $\tau = \frac{2R}{v_i} |T(E)|^{-2}$

 \succ Halbwertszeit: $e^{-T_{1/2}/\tau} = \frac{1}{2} \qquad \rightsquigarrow \qquad T_{1/2} = \ln 2\tau = 0.693 \tau$

3.4.b. Fusion zweier Kerne

> Faktor $\exp\left\{-\frac{\sqrt{2m}}{\hbar\sqrt{E}}\pi Z_1 Z_2 e^2\right\}\dots$... bestimmt auch Fusionswahrscheinlichkeit.

 \succ Für größere Z_i werden Wkt. sehr klein aufgrund der wachsenden Coulomb-Barrieren.

 \succ Fusionsforschungs konzentriert sich auf H, D, T und He.

3.4.c. Kalte Elektronenemission

 Beobachtung der kalten Elektronenemission ist eine Bestätigung des qm. Tunnelns.

 \succ Raster-Tunnel-Mikroskop: ... Messung des Tunnelstromes

Sentercolite Veschiebung The Prezo lemente horizantoles Abraston Messing des Tumelstromes

3.5. Einschub: Hermite-Polynome

- \succ Funktionen der mathematischen Physik: Hermite-Polynome, Laguerre-Polynome, Legendre-Polynome, Bessel- und Hankel-Funktionen, Γ -Funktionen, ...
- ≻ Erzeugende Dgl. der Hermite-Polynome $H_n(y)$:

$$\left[\frac{d^2}{dy^2} - 2y\frac{d}{dy} + 2n\right]H(y) = 0 \qquad \iff \qquad H_n(y) = (-1)^n e^{y^2} \left[\frac{d^n}{dy^n} e^{-y^2}\right], \qquad n = 0, 1, 2, \dots$$

 \succ Nachweis durch einsetzen:

$$H_n'' = \frac{d^2}{dy^2} H_n(y) = (-1)^n \frac{d^2}{dy^2} \left[e^{y^2} \frac{d^n}{dy^n} e^{-y^2} \right] = (-1)^n e^{y^2} \left[(2 + 4y^2) \frac{d^n}{dy^n} + 4y \frac{d^{n+1}}{dy^{n+1}} + \frac{d^{n+2}}{dy^{n+2}} \right] e^{-y^2}$$

$$-2y H_n' = -2y \frac{d}{dy} H_n(y) = (-1)^n e^{y^2} \left[-4y^2 \frac{d^n}{dy^n} - 2y \frac{d^{n+1}}{dy^{n+1}} \right] e^{-y^2}$$

$$H_n'' - 2y H_n' + 2n H_n \quad != 0 = (-1)^n e^{y^2} \underbrace{ \left[\frac{d^{n+2}}{dy^{n+2}} + 2y \frac{d^{n+1}}{dy^{n+1}} + (2n+2) \frac{d^n}{dy^n} \right] e^{-y^2}}_{=0, \quad \text{muss verschwinden } (*)}$$

Betrachten die Klammer für n = 0:

$$\frac{d}{dy} (-2y) e^{-y^2} - 4y e^{-y^2} + 2 e^{-y^2} = 0$$

$$\frac{d}{dy} \left[\frac{d^{n+2}}{dy^{n+2}} + 2y \frac{d^{n+1}}{dy^{n+1}} + (2n+2) \frac{d^n}{dy^n} \right] e^{-y^2} = \left[\frac{d^{(n+1)+2}}{dy^{(n+1)+2}} + 2 \frac{d^{n+1}}{dy^{n+1}} + 2y \frac{d^{(n+1)+1}}{dy^{(n+1)+1}} + (2n+2) \frac{d^{n+1}}{dy^{n+1}} \right] e^{-y^2}$$

d.h. die Klammer (= *) ist für n = 0 erfüllt und liefert für $\frac{\partial}{\partial y} [*]^{(n)} = [*]^{(n+1)}$, d.h. es ist für beliebiges n erfüllt.

- \succ Explizite Darstellung der niedrigsten Hermite-Polynome
 - $H_o(y) = 1$ $H_1(y) = 2y$ $H_2(y) = 4y^2 - 2$ $H_3(y) = 8y^3 - 12y$ $H_4(y) = 16y^4 - 48y^2 + 12$

Alle Hermite-Polynome sind reell.

 \succ Normierungs
integral und Orthogonalitäts
relation, Vollständigkeit

$$\int_{-\infty}^{+\infty} dy \, \left[H_n(y)\right]^2 \, e^{-y^2} = \sqrt{\pi} \, 2^n \, n!, \qquad \qquad \int_{-\infty}^{+\infty} dy \, e^{-y^2} \, H_m(y) \, H_n(y) = \sqrt{\pi} \, 2^n \, n! \, \delta_{mn}$$

 \succ Nützliche Relationen:

$$H'_{n} = \frac{\partial H_{n}}{\partial y} = 2n H_{n-1}, \qquad y H_{n} = n H_{n-1} + \frac{H_{n+1}}{2}$$

 \succ Allgemeine explizite Darstellung:

$$H_n(y) = \sum_{\nu=0}^{n_{\max}} \frac{(-1)^{\nu} n!}{\nu! (n-2\nu)!} (2y)^{n-2\nu}, \qquad n_{\max} \le \frac{n}{2}, \text{ integer}$$

3.6. Harmonischer Oszillator

> Allgemeine Potenzialfunktion V(x)

$$V(x) = V(x_o) + \frac{dV}{dx}|_{x_o} (x - x_o) + \frac{1}{2} \frac{d^2 V}{dx^2}|_{x_o} (x - x_o)^2 + \approx \text{const.} + \frac{1}{2} \frac{d^2 V}{dx^2}|_{x_o} (x - x_o)^2 + V(x) = \frac{a}{2} x^2 = \frac{m}{2} \omega^2 x^2, \qquad \omega = \sqrt{\frac{a}{m}}$$

 \succ Stationäre SG:

•

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{m}{2}\omega^2 x^2\right)\psi(x) = E\psi(x)$$

Bedeutung des harmonischen Potenzials

- ≻ Gesucht: Erlaubte Energieniveaus E und stationäre Zustände $\psi(x)$.
- ≻ Vereinfachung durch Substitution der Variablen: … liefert vereinfachte SG für $u(y) = \psi(x(y))$

$$\alpha = \frac{2E}{\hbar\omega}; \qquad y = \sqrt{\frac{m\omega}{\hbar}} x = \frac{x}{b}, \qquad b = \sqrt{\frac{\hbar}{m\omega}}$$
$$\frac{d^2}{dy^2} + (\alpha - y^2) u(y) = 0$$

Untersuchen zunächst Verhalten für $y \to \pm \infty, \quad y^2 \gg \alpha$

$$u''(y) \approx y u(y) \qquad \iff \qquad u(y) \sim e^{\pm y^2/2} \quad (y \to \pm \infty)$$

Für normierbare Lösungen ist nur $e^{-y^2/2}$ ge
eignet.

 \succ Ansatz: ... Dgl. für v(y)

$$u(y) = v(y) e^{-y^2/2} \qquad \iff \qquad \left[v''(y) - 2y v'(y) - v + y^2 v + \alpha v - y^2 v\right] e^{-y^2/2} = 0$$

$$\iff \qquad \left[\frac{d^2}{dy^2} - 2y \frac{d}{dy} + (\alpha - 1)\right] v(y) = 0$$

≻ Lösungen zu dieser Gleichung:

- Potenzreihenansatz: $v = \sum_{m=0}^{\infty} a_m y^m$ • Scharfes Hinsehen: $\left[\frac{d^2}{dy^2} - 2y \frac{d}{dy} + 2n\right] H_n(y) = 0 \quad \rightsquigarrow \quad \alpha = 2n + 1 = \frac{2E}{\hbar\omega}$
- Energiewerte des Oszillators: $E = \frac{\hbar\omega}{2}(2n+1) = (n+\frac{1}{2})\hbar\omega, \quad n = 0, 1, 2, ...$
- \succ EF folgen aus Rücksubstitution und Normierung:

$$\psi_n(x) = u(y(x)) = e^{-y^2/2} H_n(y(x))$$

$$\iff \qquad \psi_n(x) = \frac{c_n}{\sqrt{b}} H_n\left(\frac{x}{b}\right) e^{-\frac{x^2}{2b^2}}, \qquad b = \sqrt{\frac{\hbar}{m\omega}}$$

- 3. Eindimensionale Probleme
 - ≻ Normierte Lösungen der tiefliegenden Zustände:

$$\psi_o(x) = \left(\frac{m\,\omega}{\pi\,\hbar}\right)^{1/4} \exp\left(-\frac{m\,\omega\,x^2}{2\,\hbar}\right)$$

$$\psi_1(x) = \left(\frac{4}{\pi}\right)^{1/4} \left(\frac{m\,\omega}{\hbar}\right)^{3/4} x \exp\left(-\frac{m\,\omega\,x^2}{2\,\hbar}\right)$$

$$\psi_2(x) = \left(\frac{m\,\omega}{4\pi\,\hbar}\right)^{1/4} \left[2\left(\frac{m\,\omega}{\hbar}\right) x^2 - 1\right] \exp\left(-\frac{m\,\omega\,x^2}{2\,\hbar}\right)$$

Bild von: ... https://de.wikipedia.org/wiki

Anmerkungen:

- i) QM liefert (erneut) diskrete, äquidistante Energi
eniveaus mit Energie
abstand $\,\hbar\,\omega$
- ii) Grundzustandsenergie: $\frac{1}{2}\hbar\omega$ Nullpunktsenergie

iii) Beispiel: Zweiatomige Moleküle

- Schwingungsspektren bei Schwingungen um die Gleichgewichtslage
- emittierte und absorbierte Photonen haben eine Energie, die ein Vielfaches von $\hbar \omega$ ist.

iv) Klassischer Grenzfall:

$$\begin{array}{l} m = 10^{-10} \,\mathrm{kg} \\ \omega = 10^{6} \,\mathrm{Hz} \end{array} \right\} \Delta E = \hbar \,\omega \,\sim \,10^{-34} \,\mathrm{Ws}^{2} \cdot 10^{6} / s = 10^{-28} \,\mathrm{Ws} = \,10^{-5} \,\mathrm{K} \end{array}$$

3.7. Parität eindimensionaler Lösungen

> Paritätsoperator P ist definiert durch: $P \psi(x) = \psi(-x)$ EW und EF:

$$P \psi(x) = \lambda \psi(x) \qquad \Longrightarrow \qquad \begin{array}{c} \lambda = 1 : \quad \psi(-x) = \psi(x) \quad \text{gerade} \\ \lambda = -1 : \quad \psi(-x) = -\psi(x) \quad \text{ungerade} \end{array}$$

≻ Für symmetrische Potenzial V(x) = V(-x) gilt:

$$PV(x) = V(x)$$

$$PH\phi(x) = H(-x)\phi(-x) = H(x)(\phi(-x)) = HP\phi(x) \qquad \forall \phi(x)$$

$$[H, P] = 0$$

Für symmetrische Potenziale vertauschen ${\cal H}$ und ${\cal P}$

≻ Zeitunabhängige Lösungen der SG:

➤ Für symmetrische Potenziale können wir allgemein stets ein Basissystem stationärer Zustände wählen, das nur aus geraden und ungeraden Funktionen besteht.

Inbesondere, falls *E* nicht entartet: EF sind automatisch gerade oder ungerade.

3.8. Diskussion der 1-dimensionalen SG

Qualitatives Verhalten:

SG:
$$\frac{d^2 \psi}{dx^2} = \frac{2m}{\hbar} (V(x) - E) \psi(x)$$

i) $V(x) - E > 0 \iff \psi''(x)$ und ψ haben gleiches Vorzeichen. $\rightsquigarrow \psi$ ist konvex zur x-Achse bzw. von x-Achse weggekrümmt.

ii) $V(x) - E < 0 \qquad \longleftrightarrow \qquad \psi''(x)$ und ψ haben verschiedenes Vorzeichen. $\rightsquigarrow \psi$ ist konkav zur *x*-Achse bzw. zur *x*-Achse hingekrümmt.

Für gegebenes Potenzial daher 3 Fälle:

a) $E < V_{\min} \rightarrow V(x) - E > 0$ überall, d.h. Lösungen müssen im Unendlichen divergieren. \rightsquigarrow keine normierbaren Lösungen.

b)
$$V_{\min} < E < 0$$

Lösungen von *x*-Achse weggekrümmt; $\sim e^{\pm \kappa x}$, $\kappa = \sqrt{\frac{2m(V(x) - E)}{\hbar^2}}$ • außerhalb WP: Lösungen zur x-Achse hin gekrümmt; ~ ~ $\cos qx$, $q = \sqrt{\frac{2m(E-V(x))}{\hbar^2}}$ • innerhalb WB:

Bestimmung gebundener Zustände: Lösungen mit korrektem Krümmungsverhalten finden, die an allen WP stetig in $\psi(x)$ und $\psi'(x)$ sind und die normierbar bleiben.

c) E > 0

links: $\psi_{I} = e^{ikx} + R e^{-ikx}$ rechts: $\psi_{II} = e^{ikx}$ } ausserhalb des Potenzials

- 3. Eindimensionale Probleme
 - ≻ Im Potenzialbereich ist die Lösung komplizierter, da wir allgemein eine effektive Wellenzahl $\tilde{k}(x) < k$ haben werden.
 - ≻ Zwei Konstanten R und T erlauben dennoch, dass die Lösung von $\psi(x)$ und $\psi'(x)$ für $x = x_0$ stetig ineinander übergehen.
 - \succ Zustandsdichte ist allgemein jedoch verschieden gegenüber ebenen freien Wellen

 $n(k) = \frac{d \,\delta(k)}{dk}$... Ableitung der Phasenverschiebung; siehe QM II

3.9. Aufgaben

Siehe Übungen.

4. Unschärferelationen

Heisenbergsche Unschärferelation (von Ort und Impuls): Ort und Impuls eines qm. Objektes können gleichzeitig nicht beliebig genau gemessen werden.

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$
 Orts-Impuls–Unschärfe

4.1. Schwarzsche Ungleichung

- > Skalarprodukt: $\langle \phi | \psi \rangle = \int d^3x \, \phi^*(\mathbf{x}) \, \psi(\mathbf{x})$
- \succ Dann gilt auch Schwarzsche Ungleichung

 $\left| \left\langle \phi \mid \psi \right\rangle \right|^2 \; \leq \; \left\langle \phi \mid \phi \right\rangle \; \left\langle \psi \mid \psi \right\rangle$

4. Unschärferelationen

4.2. Allgemeine Unschärferelation

- $\succ \text{ Erwartungwert der Observablen } A: \qquad \langle A \rangle \ = \ \langle \psi \, | \, A \, \psi \rangle \ = \ \langle A \, \psi \, | \, \psi \rangle$
- ➤ Operator zur mittleren Abweichung (Schwankungsquadrat): $(A \langle A \rangle)^2 \equiv (A \bar{A})^2$ hat Erwartungswert:

$$\left\langle \left(A - \langle A \rangle\right)^2 \right\rangle := \left(\Delta A\right)^2 = \int d^3x \ \psi^*(x) \ \left(A - \langle A \rangle\right)^2 \ \psi(x) = \left\langle \psi \right| \left(A - \bar{A}\right)^2 \psi \right\rangle$$

≻ Falls A und B hermitesch, dann auch $(A - \overline{A})^2$ und $(B - \overline{B})^2$ hermitesche Operatoren.

Diskussion des Produktes:

i) $(\Delta A)^2 (\Delta B)^2$: $(\Delta A)^2 (\Delta B)^2 = \langle \psi | (A - \bar{A})^2 \psi \rangle \langle \psi | (B - \bar{B})^2 \psi \rangle = \langle (A - \bar{A}) \psi | (A - \bar{A}) \psi \rangle \langle (B - \bar{B}) \psi | (B - \bar{B}) \psi \rangle$ $\geq |\langle (A - \bar{A}) \psi | (B - \bar{B}) \psi \rangle|^2$

ii) $AB = \frac{1}{2}(AB + BA) + \frac{1}{2}(AB - BA) = \frac{1}{2}\{A, B\} + \frac{1}{2}[A, B]:$

$$B^{+}A^{+} = (AB)^{+} = BA = \frac{1}{2}(BA + AB) + \frac{1}{2}(BA - AB) = \frac{1}{2}\{A, B\} - \frac{1}{2}[A, B]$$

Operatorprodukt zweier = hermitescher Operator + antihermitescher Operator hemitescher Operatoren (reelle EW) (imaginäre EW)

$$\left|\left\langle \left(A - \bar{A}\right)\psi \right| \left(B - \bar{B}\right)\psi\right\rangle\right|^{2} = \frac{1}{4} \left|\left\langle\psi\right| \left[\left(A - \bar{A}\right), \left(B - \bar{B}\right)\right]\psi\right\rangle\right|^{2} + \frac{1}{4} \left|\frac{\left\langle\psi\right| \left\{\left(A - \bar{A}\right), \left(B - \bar{B}\right)\right\}\psi}{_{>0, \text{ reelle EW, hermitescher Operator}}\right|^{2}$$
$$\geq \frac{1}{4} \left|\frac{\left\langle\psi\right| \left[\left(A - \bar{A}\right), \left(B - \bar{B}\right)\right]\psi}{_{\text{imaginaere EW, antihermitescher Operator}}\right|^{2}$$

Kurz (i) und (ii) ergeben gemeinsam

 $\Delta A \Delta B \geq \frac{1}{2} |\langle \psi | [A, B] \psi \rangle| = \frac{1}{2} |\langle [A, B] \rangle|$

allgemeine Form der Heisenbergschen Unschärferelation

Alle Operatoren, die nicht miteinander vertauschen, können gleichzeitig nicht beliebig genau gemessen werden.

Beispiel ($A = x_i$ und $B = p_j = -i\hbar \frac{\partial}{\partial x_j}$:): dann $\Delta x_i \Delta p_j \ge \frac{\hbar}{2} \delta_{ij}$

4.3. Energie-Zeit Unschärfe

 $\succ \Delta E \Delta t \geq \hbar$... Energie
differenz zu Zeiten, die um Δt auseinanderliegen;
 Δt ... Zeitdauer.

- 4. Unschärferelationen
- Energie-Zeit Unschärfe tritt oftmals als 'scheinbare' Verletzung der Energieerhaltung innerhalb eines kleinen Zeitintervalls auf.

Beispiel (Durchgangsdauer eines Wellenpaketes:):

Energieunschaerfe :
$$\Delta E = \frac{p \Delta p}{m}$$
 aus $\frac{dE}{dp} = \frac{d}{dp} \left(\frac{p^2}{2m}\right)$
Zeitunschaerfe : $\Delta t = \frac{\Delta x}{v_o} = \frac{m \Delta x}{p}$ Δx ... Ausdehnung des Wellenpaketes
 $\rightsquigarrow \quad \Delta E \cdot \Delta t = \Delta x \cdot \Delta p \gtrsim \hbar$

Unschärfe der dynamischen Variablen E ist mit einer für die Veränderung des Wellenpaketes charakteristischen Zeit verknüpft.

Beispiel (Dauer einer Energiemessung und Unschärfe): $\Delta t = \hbar/\Delta E$.

- Energiemessung mit Genauigkeit ΔE erfordert mindestens die Zeit $\Delta t = \hbar/\Delta E$.
- Je genauer die Energiemessung sein soll, umso länger dauert sie.

Beispiel (Lebensdauer und Energieunschärfe): Eine endliche Lebensdauer eines angeregten (Quanten-) Zustandes (z.B. angeregtes Atom, radioaktiver Kern) ist immer auch mit einer Energieunschärfe der emittierten Teilchen verknüpft (Photonen, α -Teilchen)

$$\Delta E = \frac{\hbar}{\tau}$$
 ... Lebensdauer

4.4. Gemeinsame Eigenfunktionen kommutierender Operatoren

> Betrachten Operator A mit EF
$$\psi_n(x)$$
, dann beliebige WF

$$\psi(x) = \sum_{n} c_n \psi_n(x), \qquad c_n = \langle \psi_n | \psi \rangle \qquad \dots$$
 Fourierkoeffizienten

Zwei zentrale Sätze zur Klassifizierung von Quantenzuständen:

- a) Gemeinsames System von EF: Sind A und B zwei hermitesche Operatoren und der Kommutator [A, B] = 0, dann haben A und B ein gemeinsames System von EF.
- ≻ (Transformations-) Matrix $C = (c_{kj}) = C^+ = C^{T*}$ ist hermitesch und kann dadurch durch eine unitäre Transformation auf Diagonalform gebracht werden:

$$U^{+} C U = C^{(D)} = \left(C_{i}^{(D)} \delta_{ik}\right) \qquad \text{d.h. ... Linearkombinationen}:$$

$$\phi_{i} = \sum_{k} \psi_{k} U_{ki}^{*}$$

4. Unschärferelationen

sind EF zu A und B mit EW a und $C = \left(C_i^{(D)} \delta_{ik}\right)$.

b) Vertauschbarkeit der Operatoren: Sei { $\psi_n(x)$, n = 1, 2, ...} ein vollständiger Satz von EF zu den Operatoren A und B mit EW a_n , b_n , dann gilt umgekehrt auch [A, B] = 0.

$$[A, B] \psi_n = A B \psi_n - B A \psi_n = (a_n b_n - b_n a_n) \psi_n = 0$$

Folglich gilt auch für alle $\psi = \sum_n c_n \psi_n$

 $[A, B] \psi = 0 \qquad \Longleftrightarrow \qquad [A, B] = 0$

d.h. alle Observablen, deren zugeordnete Operatoren miteinander kommutieren, können gleichzeitig scharfe Meßwerte haben.

- \succ Beispiel: x, y, z oder p_x, p_y, p_z aber nicht: $x, p_x; \dots$
- \succ (Def.) Ein vollständiges System von EF zum Operator A heißt auch Basis von A.
- c) Vollständiger Satz von Operatoren: Eine Menge hermitescher Operatoren A, B, ... heißt ein vollständiger Satz von Operatoren, wenn:
 - alle Operatoren paarweise miteinander kommutieren <u>und</u>
 - das gemeinsame System von EF nicht mehr (in allen EW) entartet ist.

Diese zugehörigen EF können dann anhand der EW a, b, \dots bzw. den zugeordneten Quantenzahlen klassifiziert werden: $\psi_{a,b,\dots}$

▶ Ist A = f(B, C, ...) eine Funktion der Operatoren B, C, ... eines vollständigen Satzes, so hat A auch diesselbe Basis von EF.

d) Jeder Operator A, der mit einem vollständigen Satz von Operatoren paarweise vertauscht, ist eine Funktion dieser Operatoren.

- \succ Vergleiche mit Postulaten der QM:
- \succ Nichtkommutierende Operatoren: ... dann Änderung bei jeder Messung.

Beispiel (Vollständige Sätze von Operatoren):

• 1-dim Potenziale:	x oder p			
• 1-dim, symmetrische Potenziale $V(x) = V(-x)$:	x oder p	oder	H, P	
• 3-dim Potenziale:	$\mathbf{x} = (x, y, z)$	oder	р	
• 3-dim, sphärisch-symmetrische Potenziale $V(r)$:	$\mathbf{x} = (x, y, z)$	oder	\mathbf{p} oder	H, \mathbf{L}^2, L_z

4.5. Aufgaben

Siehe Übungen.
5. Drehimpulse in der QM

5.1. Vertauschungsrelationen; Drehungen im Raum

 \succ Bahndrehimpuls: $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ kann mit den bekannten Korrespondenzen auch qm. interpretiert werden

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{r} \times (-i\hbar \, \boldsymbol{\nabla})$$

$$= -i\hbar \begin{pmatrix} y\partial_z - z\partial_y \\ z\partial_x - x\partial_z \\ x\partial_y - y\partial_x \end{pmatrix} = -i\hbar \left[\mathbf{e}_x \left(y\partial_z - z\partial_y \right) + \mathbf{e}_y \left(z\partial_x - x\partial_z \right) + \mathbf{e}_z \left(x\partial_y - y\partial_x \right) \right]$$

 $L_i = \epsilon_{ijk} x_j p_k$, Einsteinsche Summenkonvention

 $\succ \epsilon_{ijk}$ heißt vollständig antisymmetrischer Tensor 3. Stufe

$$\epsilon_{ijk} = \begin{cases} 1 & \text{fuer alle geraden Permutationen von } 1, 2, 3 \\ -1 & \text{alle ungeraden Permutationen} \\ 0 & \text{sonst.} \end{cases}$$

5.1.a. Vertauschungsrelationen

- ► Bahndrehimpulskomponenten: $\begin{bmatrix} L_x, L_y \end{bmatrix} = (-i\hbar)^2 \left[(y \partial_z - z \partial_y) (z \partial_x - x \partial_z) - (z \partial_x - x \partial_z) (y \partial_z - z \partial_y) \right] = (-i\hbar)^2 \left[y \partial_x - x \partial_y \right] = i\hbar L_z$ $\begin{bmatrix} L_x, L_y \end{bmatrix} = i\hbar L_z, \qquad \begin{bmatrix} L_i, L_j \end{bmatrix} = i\hbar \epsilon_{ijk} L_k,$ $\begin{bmatrix} L_y, L_z \end{bmatrix} = i\hbar L_x, \qquad \begin{bmatrix} L_i, x_j \end{bmatrix} = i\hbar \epsilon_{ijk} x_k,$ $\begin{bmatrix} L_z, L_x \end{bmatrix} = i\hbar L_y, \qquad \begin{bmatrix} L_i, y_j \end{bmatrix} = i\hbar \epsilon_{ijk} p_k,$
- \succ Der Drehimpulsoperator L ist der Generator (Erzeugende) von Drehungen, da der

$$U_{\delta\varphi} = \exp\left\{\frac{i}{\hbar}\,\delta\varphi\cdot\mathbf{L}\right\} \approx 1 + \frac{i}{\hbar}\,\delta\varphi\cdot\mathbf{L} \qquad \rightsquigarrow \qquad U^{-1} = U_{-\,\delta\varphi} = U^+$$

eine infinitesimale Drehung um $\delta \varphi$ erzeugt.

- \succ Drehungen können in zweierlei Weise betrachtet werden:
 - aktiv: Ein Vektor bzw. Funktion ψ wird um einen Winkel $\delta \varphi$ gedreht.

passiv: Die neuen Koordinaten des Vektors entstehen durch eine Drehung des Koordinatensystems um $-\delta \varphi$

- \succ Betrachten Drehung als passive Transformation, d.h. WF
 - $\psi(\mathbf{r}) \text{ im System S} \longrightarrow \psi(\mathbf{r}') \text{ im System S'}.$

5.1.b. Operatoren im gedrehten System S'

$$A' = UAU^{+} = \left(1 + \frac{i}{\hbar} \underbrace{\delta \varphi \cdot \mathbf{L}}_{\delta \phi_{m} L_{m}}\right) A \left(1 - \frac{i}{\hbar} \delta \varphi \cdot \mathbf{L}\right) = A + \frac{i}{\hbar} \delta \varphi_{m} [L_{m}, A]$$

Operator A' hat im gedrehten System S' auf $\psi(\mathbf{r}')$ diesselbe Wirkung, wie A im System S auf $\psi(\mathbf{r})$.

5.1.c. Spezialfälle

- i) A sei skalarer (drehinvarianter) Operator, d.h. A' = A und somit: $[L_i, A] = 0$ für i = 1, 2, 3.
- \succ Beispiele: Drehinvarianter Hamiltonoperator $H = \frac{\mathbf{p}^2}{2m} + V(r), \quad \mathbf{p}^2, \mathbf{L}^2$
- ii)
 ${\bf v}\,$... sei Vektor
operator, dann Transformation bei Drehungen:

$$\mathbf{v}' = \mathbf{v} + \delta \boldsymbol{\varphi} \times \mathbf{v}, \qquad v'_j = v_j + \epsilon_{jkm} \,\delta \varphi_k \, v_m = v_j + \frac{i}{\hbar} \,\delta \varphi_k \left[L_k, \, v_j \right]$$

.

 $[L_i, v_j] = i\hbar \epsilon_{ijk} v_k$

 \succ Beispiele: L, x, p

5. Drehimpulse in der QM

5.2. Eigenwerte des Drehimpulses

- \succ Kein gemeinsames Basissystem zu L_x, L_y, L_z
- \succ [L², L_i] = 0, i = 1, 2, 3

... gemeinsames Basissystem für Quadrat des Drehimulses L und eine Komponente, gewöhnlich L_z .

 \succ Leiteroperatoren: $L_{\pm} = L_x \pm i L_y$

$$L_{\pm}^{+} = L_{\mp}, \qquad [L_{+}, L_{-}] = 2\hbar L_{z}, \qquad [L_{z}, L_{\pm}] = i\hbar L_{y} \pm \hbar L_{x} = \pm \hbar L_{\pm}$$
$$\mathbf{L}^{2}, L_{\pm}] = 0, \qquad L_{+} L_{-} = L_{x}^{2} + L_{y}^{2} + \hbar L_{z}$$
$$\mathbf{L}^{2} = L_{x}^{2} + L_{y}^{2} + L_{z}^{2} = L_{+} L_{-} - \hbar L_{z} + L_{z}^{2} = L_{-} L_{+} + \hbar L_{z} + L_{z}^{2}$$

- ➤ Eigenwertspektrum von Drehimpulsen:
 - $\ell = 0, 1, 2, \dots$ oder $\ell = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, m = \ell, \ell 1, \dots, -\ell + 1, -\ell$

Die Drehimpulseigenwerte ℓ sind stets ganz- oder halbzahlig <u>und</u> die *m*-EW liegen in ganzzahligen Schritten zwischen $-\ell$, ..., ℓ .

5.3. Eigenfunktionen des Bahndrehimpulses

5.3.a. Bahndrehimpulsoperator in Kugelkoordinaten

≻ Kugelkoordinaten:

$$\mathbf{r} = r \, \mathbf{e}_{r}$$

$$\nabla = \mathbf{e}_{r} \frac{\partial}{\partial r} + \mathbf{e}_{\vartheta} \frac{1}{r} \frac{\partial}{\partial \vartheta} + \mathbf{e}_{\varphi} \frac{1}{r \sin \vartheta} \frac{\partial}{\partial \varphi}$$

$$\mathbf{L} = -i\hbar \, \mathbf{r} \times \nabla$$

$$L_{x} = -i\hbar \left(-\sin \varphi \frac{\partial}{\partial \vartheta} - \cos \varphi \cot \vartheta \frac{\partial}{\partial \varphi} \right), \qquad L_{y} = -i\hbar \left(\cos \varphi \frac{\partial}{\partial \vartheta} - \sin \varphi \cot \vartheta \frac{\partial}{\partial \varphi} \right)$$

$$L_{z} = -i\hbar \frac{\partial}{\partial \varphi}, \qquad L_{\pm} = \hbar e^{\pm i\varphi} \left(\pm \frac{\partial}{\partial \vartheta} + i \cot \vartheta \frac{\partial}{\partial \varphi} \right)$$

$$\mathbf{L}^{2} = -\hbar^{2} \left[\frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{\sin^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}} \right]$$

5. Drehimpulse in der QM

5.3.b. EW-Gleichungen

► EW-Gleichungen:

$$\mathbf{L}^{2} \psi_{\ell m} = -\hbar^{2} \left[\frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{\sin^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}} \right] \psi_{\ell m} = \hbar^{2} \ell (\ell + 1) \psi_{\ell m}$$

$$L_{z} \psi_{\ell m} = -i\hbar \frac{\partial}{\partial \varphi} \psi_{\ell m} = \hbar m \psi_{\ell m}$$

Gesucht: $\psi_{\ell m} = \psi_{\ell m} (\vartheta, \varphi)$

≻ Verwenden Separationsansatz: $\psi(\vartheta, \varphi) = \Phi(\varphi) \Theta(\vartheta)$

 $\Phi(\varphi) = e^{i m \varphi}$, Stetigkeit $\Phi(\varphi + 2\pi) = \Phi(\varphi)$, zyklische RB

 $m,\ \ell$ müssen ganzzahlig sein: $\ell = 0,\ 1,\ 2,\ \dots$ $m = -\ell,\ -\ell+1,\ \dots,\ \ell$

► Einsetzen von $\psi_{\ell m} = e^{i m \varphi} \Theta(\vartheta)$ liefert Dgl.

$$\left[\frac{1}{\sin\vartheta}\frac{\partial}{\partial\vartheta}\left(\sin\vartheta\frac{\partial}{\partial\vartheta}\right) - \frac{m^2}{\sin^2\vartheta} + \ell(\ell+1)\right]\Theta(\vartheta) = 0$$

5.3.c. Lösungen der EW-Gleichungen

 \succ Normierte Lösungen:

$$\psi_{\ell m}(\vartheta,\varphi) = Y_{\ell m}(\vartheta,\varphi) = (-1)^{\frac{(m+|m|)}{2}} P_{\ell|m|}(\cos\vartheta) e^{i\,m\,\varphi} \left[\frac{2\ell+1}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}\right]^{1/2}$$

 $P_{\ell m}(x)$ heißen assoziierte/zugeordnete Legendre-Funktionen

$$P_{\ell m}(x) = (1-x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_{\ell}(x), \qquad P_{\ell m}(\cos\vartheta) = \frac{(-1)^{\ell}}{2^{\ell} \ell!} \sin^m\vartheta \frac{d^{\ell+m} (\sin^{2\ell}\vartheta)}{d\cos^{\ell+m} \vartheta}, \qquad m \ge 0$$

≻ Legendre-Polynome $P_{\ell}(x)$:

$$P_{\ell}(x) = \frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{dx^{\ell}} (x^2 - 1)^{\ell} = \frac{(-1)^{\ell}}{2^{\ell} \ell!} \frac{d^{\ell} \sin^{2\ell} \vartheta}{d \cos^{\ell} \vartheta}$$

- \succ Rekursions relation der Legendre-Polynome:
- ≻ Ortogonalität der assoziierten Legendre-Polynome:
- ≻ Symmetrie der assoziierten Legendre-Polynome:

5.3.d. Erinnerung: Kugelflächenfunktionen

Siehe ED-Vorlesung.

➤ Die Kugelfunktionen $Y_{lm}(\vartheta, \varphi)$ bilden ein vollständiges, orthonormales System von Eigenfunktionen der Operatoren L und L_z .

- 5. Drehimpulse in der QM
 - > Zu jedem ℓ gibt es $(2\ell + 1)$ EF mit EW $m = -\ell, -\ell + 1, ..., \ell$.
 - \succ Die Drehimpulskomponenten L_x und L_y sind in den Zuständen $Y_{\ell m}$ nicht-diagonal, jedoch ist

 $\bar{L}_x = \langle Y_{\ell m} | L_x | Y_{\ell m} \rangle = 0 = \bar{L}_y;$ $(\Delta L_x)^2, \ (\Delta L_x)^2 > 0$

 \succ Raumspiegelung (Inversion): $\mathbf{x} \rightarrow -\mathbf{x}, \quad \vartheta, \varphi \rightarrow \pi - \vartheta, \varphi + \pi$

 $P Y_{lm}(\vartheta,\varphi) = Y_{lm}(\pi - \vartheta,\varphi + \pi) = e^{i m \pi} (-1)^{\ell + |m|} Y_{\ell m}(\vartheta,\varphi) = (-1)^{\ell} Y_{lm}(\vartheta,\varphi)$

5.3.e. Physikalische Notationen:

Physikalische Bezeichnung der EF

- $\succ \ell = 0$ s-Orbitale
- $\succ \ell = 1$ p-Orbitale
- $\succ \ell = 2$ d-Orbitale
- $\succ \ell \geq 3$ f, g, h, i, j, ...-Orbitale

Polardiagramme der Kugelfunktionen:

≻ Häufige Darstellung als Polardiagramm $|Y_{lm}(\vartheta, \varphi)|^2 = |\Theta(\vartheta)|^2$

 \succ Mitunter werden auch Linearkombinationen verwendet:

$$p_x = -\frac{1}{\sqrt{2}} (Y_{11} - Y_{1,-1}) = \sqrt{\frac{3}{4\pi}} \sin \vartheta \cos \varphi \qquad p_x - \text{Orbital}$$

$$p_y = -\frac{1}{\sqrt{2}i} (Y_{11} + Y_{1,-1}) = \sqrt{\frac{3}{4\pi}} \sin \vartheta \sin \varphi \qquad p_y - \text{Orbital}$$

$$p_z = \sqrt{\frac{3}{4\pi}} \cos \vartheta = Y_{10}$$

5. Drehimpulse in der QM

Bilder von: http://mathworld.wolfram.com/SphericalHarmonic.html; www.tau.ac.il; journals.plos.org/plosone

5.4. Aufgaben

Siehe Übungen.

Zur Erinnerung:

SG:

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t) = H \psi(\mathbf{x}, t) \qquad \text{bzw. fuer} \qquad H \neq H(t)$$
$$H \psi(\mathbf{x}) = E \psi(\mathbf{x}) \qquad \text{stationaere SG}$$
$$\left\{ -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) \right\} \psi(\mathbf{x}) = \left\{ -\frac{\hbar^2}{2m} \frac{\partial}{\partial x^2} - \frac{\hbar^2}{2m} \frac{\partial}{\partial y^2} - \frac{\hbar^2}{2m} \frac{\partial}{\partial z^2} + V(x, y, z) \right\} \psi(x, y, z) = E \psi(x, y, z)$$

Gesucht: Lösungen der stationären SG mit den RB

 $\begin{array}{c} \psi(x,y,z) \\ \frac{\partial\psi}{\partial x}, \ \frac{\partial\psi}{\partial y}, \ \frac{\partial\psi}{\partial z}, \\ \psi(x,y,z) \quad \text{normierbar} \end{array} \right\} \qquad \qquad \text{seien stetige Funktionen} \\ \int d^3x \ |\psi(x,y,z)|^2 \qquad \text{existiert} \end{array}$

6.1. Separation in kartesischen Koordinaten

 \succ Betrachten spezielles Potenzial: ... und Separationsansatz, falls Potenzial separierbar

$$V(\mathbf{x}) = V(x, y, z) = V_1(x) + V_2(y) + V_3(z), \qquad \psi(\mathbf{x}) = X(x) Y(y) Z(z)$$

$$\left\{-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x})\right\} X Y Z = E X Y Z \qquad |: XYZ$$

$$\left[-\frac{\hbar^2}{2m X(x)} \frac{\partial^2 X(x)}{\partial x^2} + V_1(x)\right] + \left[-\frac{\hbar^2}{2m Y(y)} \frac{\partial^2 Y(y)}{\partial y^2} + V_2(y)\right] + \left[-\frac{\hbar^2}{2m Z(z)} \frac{\partial^2 Z(z)}{\partial z^2} + V_3(z)\right] = E$$

➤ Separation liefert:

$$E_{1} + E_{2} + E_{3} = E \qquad \text{bzw.}$$

$$-\frac{\hbar^{2}}{2m} \frac{\partial^{2} X(x)}{\partial x^{2}} + V_{1}(x) X(x) = E_{1} X(x), \qquad -\frac{\hbar^{2}}{2m} \frac{\partial^{2} Y(y)}{\partial x^{2}} + V_{2}(y) Y(y) = E_{2} Y(y),$$

$$-\frac{\hbar^{2}}{2m} \frac{\partial^{2} Z(z)}{\partial x^{2}} + V_{3}(z) Z(z) = E_{3} Z(z)$$

6.1.a. 3-dimensionaler (∞ -tiefer) Potentialtopf

 \succ Potenzial:

$$V(x,y,z) = \begin{cases} 0 & -a \leq 0 \leq a, \quad -b \leq 0 \leq b, \quad -c \leq 0 \leq c, \\ \infty & \text{sonst} \end{cases}$$

$$V(x,y,z) = \begin{cases} 0 & -a \leq 0 \leq a, \quad -b \leq 0 \leq b, \quad -c \leq 0 \leq c, \\ \infty & \text{sonst} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{\sqrt{a}} \cos\left(\frac{n_1 \pi}{2a} x\right) & n_1 = 1, 3, 5, \dots \text{ ungerade} \end{cases}$$

$$X(x) = \begin{cases} \frac{1}{\sqrt{a}} \sin\left(\frac{n_1 \pi}{2a} x\right) & n_1 = 2, 4, 6, \dots \text{ gerade} \end{cases}$$

und analog für Y(y) und Z(z) mit den natürlichen Zahlen n_2 und n_3 .

 \succ Gesamtlösung:

$$E_{n_1 n_2 n_3} = \frac{\hbar^2 \pi^2}{8 m_e} \left(\frac{n_1}{a^2} + \frac{n_2}{b^2} + \frac{n_3}{c^2} \right)$$

$$\psi_{n_1 n_2 n_3}(x, y, z) = \frac{1}{\sqrt{abc}} \left\{ \begin{array}{c} \cos \\ \sin \end{array} \right\} \left(\frac{n_1 \pi}{2a} x \right) \left\{ \begin{array}{c} \cos \\ \sin \end{array} \right\} \left(\frac{n_2 \pi}{2b} y \right) \left\{ \begin{array}{c} \cos \\ \sin \end{array} \right\} \left(\frac{n_3 \pi}{2c} z \right)$$

$$\cos(\dots) \quad \dots \text{ falls n_i ungerade;} \qquad \sin(\dots) \quad \dots \text{ falls n_i gerade}$$

► Beobachtungen:

► Grundzustand:
$$n_1 = n_2 = n_3 = 1$$
, d.h. ψ_{111} hat Energie $E_{111} = \frac{\hbar^2 \pi^2}{8 m_e} \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right)$

- 6. Dreidimensionale SG; Zentralpotentiale
 - ► Entartung: ... für symmetrische Potenziale, z.B. a = b: $E_{n_1 n_2 n_3} = \frac{\hbar^2 \pi^2}{8 m_e} \left(\frac{n_1 + n_2}{a^2} + \frac{1}{c^2} \right)$, $E_{12 n_3} = E_{21 n_3}$.
 - ➤ Und umgekehrt: Entartung der Energieniveaus ist häufig mit einer Symmetrie des Potenzials verbunden.
 - $\succ \text{ Vorsicht jedoch } ! \qquad |\psi_{12\,n_3}|^2 \neq |\psi_{21\,n_3}|^2$
 - > Nach Energiemessung: $|\psi_{12n_3}|^2 + |\psi_{21n_3}|^2$... im Mittel aufgrund der Symmetrie des Potenzials.

6.1.b. 3-dimensionaler harmonischer Oszillator

 \succ Potenzial:

$$V(x, y, z) = \frac{a}{2}x^{2} + \frac{b}{2}y^{2} + \frac{c}{2}c^{2} = \frac{m_{e}}{2}\left(\omega_{1}^{2}x^{2} + \omega_{2}^{2}y^{2} + \omega_{3}^{2}z^{2}\right)$$
$$-\frac{\hbar^{2}}{2m}\frac{\partial^{2}X(x)}{\partial x^{2}} + \frac{m_{e}}{2}\omega_{1}^{2}x^{2}X(x) = E_{1}X(x), \qquad \omega_{1} = \frac{a}{m}; \qquad \dots$$

 \succ Gesamtlösung:

$$E_{n_1 n_2 n_3} = \hbar \omega_1 \left(n_1 + \frac{1}{2} \right) + \hbar \omega_2 \left(n_2 + \frac{1}{2} \right) + \hbar \omega_3 \left(n_3 + \frac{1}{2} \right)$$

 $\psi_{n_1 n_2 n_3}(x, y, z) = H_{n_1}(\tilde{x}) H_{n_2}(\tilde{y}) H_{n_3}(\tilde{z}) e^{-\frac{1}{2}(\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2)} H_n$... Hermitesche Polynome

$$\tilde{x} = \sqrt{\frac{m\,\omega_1}{\hbar}}\,x;$$
 $\tilde{y} = \sqrt{\frac{m\,\omega_2}{\hbar}}\,y;$ $\tilde{z} = \sqrt{\frac{m\,\omega_3}{\hbar}}\,z;$

6.2. Separation der SG in Kugelkoordinaten

- ≻ Kugelsymmetrisches Potenzial, Zentralfelder: V = V(r) ... (r, ϑ, φ) Kugelkoordinaten
- \succ Laplace-Operator in Kugelkoordinaten:

$$\frac{\partial}{\partial \mathbf{r}^2} = \frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2}$$
$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\mathbf{L}^2}{\hbar^2 r^2}$$

 \succ SG in Kugelkoordinaten:

$$\left\{-\frac{\hbar^2}{2m}\boldsymbol{\nabla}^2 + V(\mathbf{x})\right\} \psi(\mathbf{x}) = E \psi(\mathbf{x})$$

$$\left\{ -\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\mathbf{L}^2}{\hbar^2 r^2} \right] + V(r) \right\} \psi(r, \vartheta, \varphi) = E \psi(r, \vartheta, \varphi)$$
$$\left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{\mathbf{L}^2}{2m r^2} + V(r) \right] \psi(r, \vartheta, \varphi) = E \psi$$

≻ EF zu \mathbf{L}^2 sind die $Y_{\ell m}$'s, daher Separation

$$\psi(r,\vartheta,\varphi) = R(r) Y_{\ell m}(\vartheta,\varphi) = \frac{P(r)}{r} Y_{\ell m}(\vartheta,\varphi)$$

$$\left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{\hbar^2 \ell(\ell+1)}{2m r^2} + V(r) \right] R(r) = E R(r) \qquad \text{bzw. mit} \qquad R(r) = \frac{P(r)}{r}$$

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + \frac{\hbar^2 \ell(\ell+1)}{2m r^2} + V(r) \right] P(r) = E P(r) \qquad \text{radiale SG}$$

Bemerkungen:

≻ H ist ein invarianter Skalar gegenüber Drehungen, daher: $[H, \mathbf{L}] = [H, \mathbf{L}^2] = [H, L_z] = 0$

 H, L^2, L_z besitzen ein gemeinsames System von EF bzw. sind gemeinsam diagonalisierbar.

2 Zertingal john Zia

 \succ Analog zur 1-dim SG ... falls die Terme aufgefaßt werden als

$$\frac{\hbar^2 \ell(\ell+1)}{2m r^2} + V(r) = V_{\text{eff}} \qquad \dots \text{ effektivesPotenzia}$$

AVE

≻ Rand- und Normierungsbedingung für P(r):

$$\lim_{r \to \infty} |P(r)| \le \frac{a}{r^{(1/2+\epsilon)}} \qquad \text{mit} \quad \epsilon > 0$$

bzw. P(r) muß für große r stärker als mit $1/\sqrt{r}$ abfallen.

 $P(r \to 0) = 0$, denn sonst wäre $\Delta \psi = \nabla^2 \frac{P(r)}{r}|_{r=0} \approx \delta(\mathbf{r}) P(0)$ unendlich.

 $\blacktriangleright \ |P(r)|^2\,dr \quad \dots$ W
kt., das Teilchen in einem gebundenen Zustand im Interval
l $\ r\dots r+dr \$ zu finden, denn

$$|P(r)|^2 dr = |R(r)|^2 r^2 dr \underbrace{\int_0^{\pi} d\vartheta \sin \vartheta \int_0^{2\pi} d\varphi |Y_{\ell m}(\vartheta, \varphi)|^2}_{\text{Normierung der Kugelfunktionen}}, \int_0^{\infty} dr |P(r)|^2 = 1$$

(Zentrifugalpotenzial)

6.3. Das Wasserstoff-Atom (H-Atom)

≻ Zentralpotenzial zur Coulomb-Wechselwirkung: $V(r) = -\frac{Z e^2}{4\pi \epsilon_o r}$

> Annahme: Elektron bewegt sich im Kraftfeld des im Koordinatenursprung festgehaltenen Kernes; gleiche Form der radialen SG gilt jedoch auch, wenn für die Elektronenmasse $m_e \rightarrow \mu = \frac{m_e m_N}{m_e + m_N} \lesssim m_e$ verwendet wird.

6.3.a. Allgemeine Aussage über die Existenz von Bindungszuständen

Für $\ell = 0 \quad \rightsquigarrow \quad V_{\text{eff}} = V(r) \quad \rightsquigarrow \quad \text{gerader Bindungszustand.}$

Existenz eines 1. angeregten Zustandes setzt Mindeststärke des Potenzials voraus; Zentrifugalterm ist abstoßend ...

i) Grenzfall: $r \rightarrow 0$

$$\begin{bmatrix} -\frac{\hbar^2}{2m}\frac{d^2}{dr^2} + \frac{\hbar^2\ell(\ell+1)}{2mr^2} \end{bmatrix} P(r) = 0 \qquad \text{gDgl. 2. Ordnung}$$
$$P(r) = Ar^{\ell+1} + Br^{-\ell} \qquad B \neq 0 \qquad \text{unzulaessig fuer} \qquad r \to 0$$
$$P(r \to 0) = r^{\ell+1} (a_o + a_1r + ...)$$

ii) Grenzfall: $r \to \infty$

$$-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}P(r) = EP(r) \qquad \text{Exponential ansatz}$$

$$P(r \to \infty) \sim e^{-\kappa r} \qquad \kappa = \frac{1}{\hbar}\sqrt{2m(-E)}, \quad E < 0, \quad \text{gebunden}$$

$$e^{+\kappa r} \qquad \text{nicht normierbar; unphysikalisch}$$

Variablensubstitution: $\rho = \kappa r = \frac{1}{\hbar} \sqrt{2m(-E)} r$

$$\left[\frac{d^2}{d\rho^2} - \frac{\ell(\ell+1)}{\rho^2} - \frac{V(\rho/\kappa)}{|E|} - 1\right] P(\rho) = 0$$
$$\left[\frac{d^2}{d\rho^2} - \frac{\ell(\ell+1)}{\rho^2} + \frac{\rho_o}{\rho} - 1\right] P(\rho) = 0$$

mit:
$$\frac{V}{|E|} = -\frac{\rho_o}{\rho}, \qquad \rho_o = \frac{e^2 Z \kappa}{|E|} = \sqrt{\frac{2m}{|E|} \frac{Z e^2}{\hbar}}$$

Ansatz : $P(\rho) = \rho^{\ell+1} e^{-\rho} F(\rho)$

(ebenfalls reduzierte) radiale SG für Coulomb-Potenzial

6.3.b. Radiale Schrödinger-Gleichung

Lösungen mit Hilfe eines Potenzreihenentwicklung:

 \succ Einsetzen liefert D
gl. 2. Ordnung für $F(\rho) \ \dots$ und Lösung mit Hilfe eines Potenzreihen
ansatzes:

$$\rho \frac{d^2 F(\rho)}{d\rho^2} + 2(\ell + 1 - \rho) \frac{dF}{d\rho} + (\rho_o - 2(\ell + 1)) F = 0 \qquad F(\rho) = \sum_{k=0}^{\infty} a_k \rho^k$$

$$\sum_{k=0}^{\infty} a_k \left[k \left(k-1 \right) \rho^{k-1} + 2 \left(\ell+1 \right) k \rho^{k-1} - 2k \rho^k + \left(\rho_o - 2(\ell+1) \right) \rho^k \right] = 0$$
$$\left[k \left(k+1 \right) + 2 \left(\ell+1 \right) \left(k+1 \right) \right] a_{k+1} + \left[-2k + \left(\rho_o - 2(\ell+1) \right) \right] a_k = 0$$

➤ Rekursionrelation:

$$a_{k+1} = \frac{2(k+\ell+1) - \rho_o}{(k+1)(k+2\ell+2)} \cdot a_k \qquad \text{fuer} \quad k \to \infty : \qquad \frac{a_{k+1}}{a_k} \longrightarrow \frac{2}{k}$$

≻ Vergleich mit Entwicklung der Exponentialreihe liefert ebenfalls:

$$e^{2\rho} = \sum_{k=0}^{\infty} \frac{1}{k!} (2\rho)^k \implies \frac{a_{k+1}}{a_k} \xrightarrow{k \to \infty} \frac{2}{k} \implies F(\rho) \xrightarrow{k \to \infty} e^{2\rho} \qquad \dots \text{ nicht normierbar}$$

 \succ muß für endliche k abbrechen; d.h.

 $F(\rho)$ ist ein Polynom N-ten Grades.

Abbruchbedingung: $a_{N+1} = a_{N+2} = \dots = 0$ \rightsquigarrow $\rho_o = 2(N + \ell + 1), N = 0, 1, 2, \dots$

6.3.c. Eigenwerte und Energien

≻ Hauptquantenzahl $n = N + \ell + 1$: ... bzw. radiale QZ ... N

 \succ Wir erhalten mit $\rho_o = \sqrt{\frac{2m}{|E|}} \frac{Z e^2}{\hbar} = 2n$

 $E_n = -\frac{m Z^2 e^4}{2\hbar^2 n^2}$ n = 1, 2, ...; $\ell = 0, 1, ..., n-1;$

\succ Entartung der Eigenwerte E_n

- Hauptquantenzahl: n = 1, 2, ...
- Drehimpulsquantenzahl: $\ell = 0, 1, ..., n-1$

• Magnetische QZ:
$$m = -\ell, -\ell + 1, ..., \ell$$

$$\sum_{\ell=0}^{n-1} (2\ell+1) = 2 \frac{n(n-1)}{2} + n = n^2 \qquad \begin{cases} n=1 & \ell=0 \ (s-\text{Orbital}) & m=0 \\ n=2 & \ell=0 \ (s) & m=0 \\ \ell=1 \ (p) & m=-1, 0, 1 \\ \ell=1 \ (p) & m=-1, 0, 1 \\ \ell=1 \ (p) & m=-1, 0, 1 \\ \ell=2 \ (d) & m=-2, -1, 0, 1, 2 \\ \ell=3 \ 9-\text{fach} \end{cases}$$

n^2 -fache Entartung

➤ Bei zusätzlicher Berücksichtigung des Spins gibt es für jedes $\psi_{n\ell m}(r, \vartheta, \varphi)$ zwei Elektronen bzw. $2n^2$ Elektronen für jedes n; $2(2\ell + 1)$ für jede ... (Elektronen-) Schale $(n \ell)$

6.3.d. Wellenfunktionen

- i) Einsetzen von ρ_o in Rekursion und Rücksubstitution.
- ii) Zusammenhang zu einer bekannten Dgl. der mathematischen Physik herstellen.

$$(2\rho)\frac{d^2F}{d(2\rho)^2} + ((2\ell+1) + 1 - (2\rho))\frac{dF}{d(2\rho)} + ((n+\ell) - (2\ell+1))F = 0$$
(A)

➤ Mathematiker sagt: (erzeugende) Laguerresche Dgl. mit den bekannten zugeordneten Laguerre-Polynomen als Lösung:

$$x L_r''(x) + (1-x) L_r' + r L_r = 0 \iff$$

$$L_r^s(x) = \frac{d^s}{dx^s} L_r(x) = \frac{d^s}{dx^s} e^x \frac{d^r}{dx^r} e^{-x} x^r = \sum_{k=0}^{r-s} (-1)^{k+s} \frac{(r!)^2}{k! (k+s)! (r-k-s)!} x^k$$

 \succ Diese Polynome erfüllen die Normierungsrelation ... und s-fache Differentiation der Laguerreschen Dgl.:

$$\int_{0}^{\infty} dx \, x^{s+1} \, e^{-x} \, \left[L_{r}^{s}(x) \right]^{2} = \frac{(2r-s+1) \, (r!)^{3}}{(r-s)!}$$
$$x \, L_{r}^{s''}(x) + (s+1-x) \, L_{r}^{s'} + (r-s) \, L_{r}^{s} = 0 \tag{B}$$

 $\succ \text{ Vergleich von (A) und (B) liefert für } s = 2\ell + 1, \quad r = n + \ell :: \qquad F(\rho) = A L_{n+\ell}^{2\ell+1}(2\rho), \quad \rho = \kappa r$

≻ Einsetzen und Rücksubstitution ergibt für die gebundenen stationären Zustände des Coulomb-Potenzials

$$\psi_{n\ell m}(r,\vartheta,\varphi,t) = e^{-iE_nt/\hbar} R_{n\ell}(r) Y_{\ell m}(\vartheta,\varphi)$$

$$R_{n\ell} = \frac{P_{n\ell}(r)}{r} = -\left[\frac{(n-\ell-1)! (2\kappa)^3}{2n ((n+\ell)!)^3}\right]^{1/2} (2\kappa r)^{\ell} e^{-\kappa r} L_{n+\ell}^{2\ell+1}(2\kappa r)$$

$$\kappa = \frac{\sqrt{2m |E|}}{\hbar} = \frac{mZ e^2}{\hbar^2 n} = \frac{Z}{n a} \qquad a = \frac{\hbar^2}{m e^2} = 0.529 \cdot 10^{-8} \,\mathrm{cm} \qquad \text{Bohr} - \text{Radius}$$

 \succ Energieeigenwerte: $mc^2 = 0.51098$ MeV ... Ruheenergie der Elektronen

$$E_n = -\frac{mZ^2 e^4}{2\hbar^2 n^2} = -\frac{(Ze)^2}{2a n^2} = -\frac{mc^2}{2} \cdot \alpha^2 \cdot \frac{Z^2}{n^2} = -\frac{Z^2}{2n^2} \text{ Hartree} = -\frac{Z^2}{n^2} \text{ Rydberg}$$

$$\alpha = \frac{e^2}{\hbar c} = \frac{1}{137.037} \qquad \text{Sommerfeldsche Feinstrukturkonstante}$$

➤ Ionisationspotenzial f
ür Wasserstoff (Z=1): E₁ = -13.6 eV = -1 Ry (Rydberg).
 ➤ Wellenfunktionen sind orthogonal:

$$\langle \psi_{n\ell m} | \psi_{n'\ell'm'} \rangle = \int d^3x \ \psi_{n\ell m}^* \ \psi_{n'\ell'm'} = \delta_{nn'} \ \delta_{\ell\ell'} \ \delta_{mm'}$$

6.4. Diskussion zum Wasserstoff-Atom (H-Atom)

6.4.a. Anmerkungen

- (i) Radialfunktionen haben $N = n \ell 1$ positive Nullstellen (Knoten).
- (ii) $R_{nl}(r) = \frac{P_{n\ell}(r)}{r}$ hängt nicht von QZ m ab.
- (iii) $|\psi_{n\ell m}|^2 dV = |\psi_{n\ell m}(r, \vartheta, \varphi; t)|^2 r^2 dr d\Omega$ Aufenthaltswahrscheinlichkeit in dr und $d\Omega$;

Integration über $d\Omega$ liefert:

 $|R_{n\ell}(r)|^2 r^2 dr = |P_{n\ell}|^2 dr$... radiale Verteilungsfunktion

- 6. Dreidimensionale SG; Zentralpotentiale
 - \succ Explizite Darstellung der niedrigsten radialen WF:

$$n = 1, \ \ell = 0 : \qquad R_{10}(r) = 2 \left(\frac{Z}{a}\right)^{3/2} e^{-\frac{Zr}{a}} \qquad (K - Schale, \ s - Orbital)$$

$$n = 2, \ \ell = 0 : \qquad R_{20}(r) = 2 \left(\frac{Z}{2a}\right)^{3/2} \left(1 - \frac{Zr}{2a}\right) e^{-\frac{Zr}{2a}} \qquad (L - Schale, \ s - Orbital, \ L_1)$$

$$\ell = 1 : \qquad R_{21}(r) = \frac{1}{\sqrt{3}} \left(\frac{Z}{2a}\right)^{3/2} \frac{Zr}{a} e^{-\frac{Zr}{2a}} \qquad (L - Schale, \ p - Orbital, \ L_{23})$$

$$n = 3, \ \ell = 0 : \qquad R_{30}(r) = 2 \left(\frac{Z}{3a}\right)^{3/2} \left[1 - \frac{2Zr}{3a} + \frac{2(Zr)^2}{27a^2}\right] e^{-\frac{Zr}{3a}} \qquad (M_1 - Schale, \ s - Orbital)$$

$$\ell = 1 : \qquad R_{31}(r) = \frac{4\sqrt{2}}{9} \left(\frac{Z}{3a}\right)^{3/2} \frac{Zr}{a} \left(1 - \frac{Zr}{6a}\right) e^{-\frac{Zr}{3a}} \qquad (M_{23} - Schale, \ p - Orbital)$$

$$\ell = 2 : \qquad R_{32}(r) = \frac{2\sqrt{2}}{27\sqrt{5}} \left(\frac{Z}{3a}\right)^{3/2} \left(\frac{Zr}{a}\right)^2 e^{-\frac{Zr}{3a}} \qquad (M_{45} - Schale, \ d - Orbital)$$

 \succ Wellenfunktionen:

$$\psi_{n\ell m} = R_{nl}(r) Y_{\ell m}(\vartheta, \varphi)$$

$$\begin{split} \Psi_{100} &= \sqrt{\frac{4Z^3}{a_0^3}} \; e^{-Zr/a_0} \cdot \sqrt{\frac{1}{4\pi}} \\ \Psi_{200} &= \sqrt{\frac{Z^3}{8a_0^3}} \left(-\frac{Zr}{a_0} + 2 \right) e^{-Zr/2a_0} \cdot \sqrt{\frac{1}{4\pi}} \\ \Psi_{210} &= \sqrt{\frac{Z^3}{24a_0^3}} \left(\frac{Zr}{a_0} \right) e^{-Zr/2a_0} \cdot \sqrt{\frac{3}{4\pi}} \cos \vartheta \\ \Psi_{2,1,\pm 1} &= \mp \sqrt{\frac{Z^3}{24a_0^3}} \left(\frac{Zr}{a_0} \right) e^{-Zr/2a_0} \cdot \sqrt{\frac{3}{8\pi}} \sin \vartheta e^{\pm i\varphi} \end{split}$$

➤ Atomspektren entstehen durch Übergänge zwischen diskreten Niveaus, wobei die Energiedifferenz als Photonen emittiert oder absorbiert werden.

$$\hbar \omega_{mn} = E_m - E_n = \text{Ry} \left(-\frac{1}{m^2} + \frac{1}{n^2} \right)$$

Ritzsche Kombinationsprinzip folgt unmittelbar aus der SG

6.4.b. Weitere Korrekturen zum H-Atom

 i) H-Atom ist Zweikörperproblem: Kern + Elektron → Transformation auf Schwerpunkts- und Relativkoordinaten führt auf das Einkörperproblem mit der reduzierten Masse:

$$\mu = \frac{m_e m_p}{m_e + m_p} = \frac{m_e}{1 + m_e/m_p} \approx \underbrace{\frac{m_e}{1.000545}}_{\text{Korrektur in 4. Stelle}} \text{ aber : Positronium } e^-e^+ : \mu = \frac{m_e}{2}$$

ii) 'Relativistische' Effekte liefern Feinstruktur, d.h. Korrekturen von der Größe α^2

- relativistische Korrektur der Elektronenmasse
- Darwin-Term
- Spin-Bahn Kopplung
- <u>oder</u> ... Dirac-Gleichung
- iii) Lamb-Shift: quantenfeld theoretische Korrektur der Größe $\alpha^3 \ln \alpha$; erfordert QED-Beschreibung.

 $E_{2s} - E_{2p_{1/2}} \approx 4.3 \cdot 10^{-6} \,\mathrm{eV}$

iv) Hyperfeinstruktur: Wechselwirkung der magnetischen Momente des Elektrons und Protons (Kerns); wichtig nur bei ns-Orbitalen, $\simeq 1/n^3$.

 $\Delta E_{1s}^{(\text{HFS})} = 5.8 \cdot 10^{-6} \text{ eV} \rightarrow 21 \text{ cm}^{-1} (\text{H} - \text{Atom})$ Linie in der Radioastronomie

6.6. Atomic theory and computations in a nut-shell

6.6.a. Atomic spectroscopy: Level structures & collisions

Atomic processes & interactions:

- \succ Spontaneous emission/fluorescence: ... occurs without an ambient electromagnetic field; related also to absorption.
- \succ Stimulated emission: ... leads to photons with basically the same phase, frequency, polarization, and direction of propagation as the incident photons.
- \succ Photoionization: ... release of free electrons.
- ➤ Rayleigh and Compton scattering: ... Elastic and inelastic scattering of X-rays and gamma rays by atoms and molecules.
- ➤ Thomson scattering: ... elastic scattering of electromagnetic radiation by a free charged particle (electrons, muons, ions); low-energy limit of Compton scattering.
- \succ Multi-photon excitation, ionization and decay: ... non-linear electron-photon interaction.
- \succ Autoionization: ... nonradiative electron emission from (inner-shell) excited atoms.
- ➤ Electron-impact excitation & ionization: ... excited and ionized atoms; occurs frequently in astro-physical and laboratory plasmas.
- ≻ Elastic & inelastic electron scattering: ... reveals electronic structure of atoms and ions; important for plasma physics.
- \succ Pair production: ... creation of particles and antiparticles from the internal of light with matter (electron-positron pairs).
- ➤ Delbrück scattering: ... deflection of high-energy photons in the Coulomb field of atomic nuclei; a consequence of vacuum polarization.

≻ ...

 \succ In practice, the distinction and discussion of different atomic and electron-photon interaction processes also depends on the particular community/spectroscopy.

6.6.b. Atomic theory

Covers a very wide range of many-body methods and techniques, from the simple shell model of the atom to various semi-empirical method to mean-field approaches ... and up to advanced ab-initio and quantum-field theories. The aim of ab-initio atomic structure and collision theory is to describe the (electronic) level structure, properties and dynamical behaviour on the basis of the (many-electron) Schrödinger equation or by even applying field-theoretical techniques.

Well, ... this is quite an ambitious task, and with a lot of surprises when it comes to details.Atomic theory is a great playground, indeed.Requires good physical intuition, or this is typically benefitial, at least.

Theoretical models:

- ➤ Electronic structure of atoms and ions: is described quantum mechanically in terms of wave functions, energy levels, ground-state densities, etc., and is usually based on some atomic (many-electron) Hamiltonian.
- > Interaction of atoms with the radiation field: While the matter is treated quantum-mechanically, the radiation is more often than not (> 99 % of all case studies) described as a classical field.
- \succ This semi-classical treatment is suitable for a very large class of problems, sometimes by incorporating 'ad-hoc' quantum effects of the em field (for instance, spontaneous emission).
- ➤ Full quantum treatment: of the radiation field is very rare in atomic and plasma physics and requires to use quantum-field theoretical techniques; for example, atomic quantum electrodynamics (QED).

Combination of different (theoretical) techniques:

- ➤ Special functions from mathematical physics (spherical harmonics, Gaussian, Legendre- and Laguerre polynomials, Whittacker functions, etc.).
- \succ Racah's algebra: Quantum theory of angular momentum.
- \succ Group theory and spherical tensors.
- \succ Many-body perturbation theory (MBPT, coupled-cluster theory, *all-order* methods).
- \succ Multiconfigurational expansions (CI, MCDF).
- \succ Density matrix theory.

6.7. Need of (accurate) atomic theory and data

- ➤ Astro physics: Analysis and interpretation of optical and x-ray spectra.
- \succ Plasma physics: Diagnostics and dynamics of plasma; astro-physical, fusion or laboratory plasma.
- \succ EUV lithography: Development of UV/EUV light sources and lithographic techniques (13.5 nm).
- ➤ Atomic clocks: Design of new frequency standards; requires accurate data on hyperfine structures, atomic polarizibilities, light shift, blackbody radiation, etc.
- \succ Search for super-heavy elements: beyond fermium (Z = 104); 'island of stability'; better understanding of nuclear structures and stabilities.
- ➤ Nuclear physics: Accurate hyperfine structures and isotope shifts to determine nuclear parameters; formation of the medium and heavy elements.
- \succ Surface & environmental physics: Attenuation, autoionization and light scattering.
- \succ X-ray science: Ion recombination and photon emission; multi-photon processes; development of x-ray lasers; high-harmonic generation (HHG).
- ➤ Fundamental physics: Study of parity-nonconserving interactions; electric-dipole moments of neutrons, electrons and atoms; 'new physics' that goes beyond the standard model.
- \succ Quantum theory: 'complete' experiments; understanding the frame and boundaries of quantum mechanics ?

≻ ...

Hierarchy of inner-atomic interactions

-- self-consistent fields vs. perturbation theory

External fields

Motion of the nucleus: Reduced mass and mass polarization

- Nuclear potential
- Instantaneous Coulomb repulsion between all pairs of electrons
- Spin-orbit interaction
- Relativistic electron velocities; magnetic contributions and retardation
- QED: radiative corrections
- Hyperfine structure
- Electric and magnetic nuclear moments (isotopes)

Abbildung 6.1.: Atomic interactions that need to be considered for a quantitative description/prediction of atoms.

Abbildung 6.2.: Characteristic time scales of atomic and molecular otions; taken from: *Controlling the Quantum World*, page 99.

7. Darstellungstheorie

7.1. Vektoren, Matrizen, unitäre Transformationen

➤ Gegeben: Operator A ... und vollständiges Orthonormalsystem $\{\psi_n(x)\}$... dann: $A_{mn} = \langle \psi_m | A \psi_n \rangle \equiv \langle \psi_m | A | \psi_n \rangle$

Matrixdarstellung von A in der Basis $\{\psi_n(x)\}$

 \succ A_{mn} heißt auch Matrixelement des Operators A zu den Basisfunktionen $\psi_m(x)$ und $\psi_n(x)$.

Eigenschaften der Matrix (A_{mn}) :

i) Ist $A = A^+$ hermitesch, dann ist auch (A_{mn}) eine hermitesche bzw. reell-symmetrische Matrix: $A_{mn}^* = A_{nm}$

ii) Sind $\{\psi_n(x)\}$ die Eigenvektoren/EF zum Operator A, dann gilt: $A_{mn} = a_m \, \delta_{mn}$ a_m ist EW zu $\psi_m(x)$: $A \, \psi_m(x) = a_m \, \psi_m(x)$

Da $\{\psi_m(x)\}$ vollständig, gilt für jeden beliebigen Zustand

$$\psi(x) = \sum_{m} \psi_{m}(x) c_{m} = \sum_{m} \psi_{m}(x) \langle \psi_{m} | \psi \rangle, \qquad c_{m} = \langle \psi_{m} | \psi \rangle$$

7. Darstellungstheorie

Betrachten weiteres vollständiges Orthonormal
system $~\{\psi_m'(x)\}$, dann offenbar

$$A'_{mn} = \langle \psi'_m | A | \psi'_n \rangle, \qquad \qquad \psi(x) = \sum_m \psi'_m(x) c'_m, \qquad \qquad c'_m = \langle \psi'_m | \psi \rangle$$

Welcher Zusammenhang besteht zwischen diesen beiden Darstellungen von $\psi(x)$??

$$\psi'_{m}(x) = \sum_{n} \psi_{n}(x) \langle \psi_{n} | \psi'_{m} \rangle = \sum_{n} \psi_{n}(x) S_{nm}$$

Transformations bzw. Überlappmatrix $S_{nm} = \langle \psi_{n} | \psi'_{m} \rangle = \int dx \, \psi^{*}_{n}(x) \, \psi'_{m}(x)$

iii) Die Transformations- bzw. Überlappmatrix S_{nm} ist unitär: $S^+ S = S S^+ = 1$

$$\sum_{m} S_{nm} S_{pm}^* = \sum_{m} S_{nm}^* S_{pm} = \delta_{np}$$

iv) Transformationsgesetze:

$$c'_m = \sum_n (S^+)_{mn} c_n, \qquad c_n = \sum_m S_{nm} c'_m,$$

v) Matrixdarstellung der Operatoren:

$$A'_{mn} = \sum_{kl} S^*_{km} A_{kl} S_{ln}, \qquad A' = S^+ A S$$
Zusammenfassend: Operatoren können bei der Wahl einer geeigneten Basis allgemein als Matrizen und die Zustände durch Vektoren dargestellt werden. Die Darstellungen zu verschiedenen Basissystemen hängen über unitäre Transformationen zusammen.

Beispiel (Harmonischer Oszillator): hat EF und Matrixdarstellung des Ortsoperators

$$\psi_n(x) = \frac{1}{\sqrt{2^n n! \sqrt{\pi b}}} \exp\left\{-\frac{1}{2} \left(\frac{x}{b}\right)^2\right\} H_n\left(\frac{x}{b}\right), \qquad b = \sqrt{\frac{\hbar}{m \omega}}, \qquad \langle \psi_m | \psi_n \rangle = \delta_{mn}$$
$$x_{mn} = \frac{b}{\sqrt{2}} \left\{\sqrt{m} \,\delta_{m,n+1} + \sqrt{m+1} \,\delta_{m,n-1}\right\} \qquad \text{Matrixdarstellung des Ortsoperators}$$

Beispiel (Ort- und Impulseigenfunktionen):

$$\begin{split} \psi_{x_o}(x) &= \delta(x - x_o), & x \,\psi_{x_o}(x) = x_o \,\psi_{x_o}(x) \\ \left\langle \psi_{x_o} \,|\, \psi_{x'_o} \right\rangle &= \int dx \,\delta(x - x_o) \,\delta(x - x'_o) = \delta(x_o - x'_o) \\ \psi_p(x) &= \frac{1}{\sqrt{2\pi \hbar}} e^{ip \cdot x/\hbar}, & \frac{\hbar}{i} \frac{\partial}{\partial x} \,\psi_p = p \,\psi_p \\ \left\langle \psi_p \,|\, \psi'_p \right\rangle &= \int \frac{dx}{2\pi \hbar} \,e^{i \,(p - p') \cdot x/\hbar} = \delta(p - p') \end{split}$$

7. Darstellungstheorie

Matrixdarstellung

$$\begin{aligned} x_{x_o x'_o} &= \int dx \,\delta(x - x_o) \,x \,\delta(x - x'_o) \,= \,x_o \,\delta(x_o - x'_o) \\ p_{x_o x'_o} &= \int dx \,\delta(x - x_o) \,\left(-i\hbar \frac{\partial}{\partial x}\right) \,\delta(x_o - x'_o) \,= \,-i\hbar \frac{\partial}{\partial x_o} \,\delta(x - x'_o) \\ x_{pp'} &= \int dx \,\frac{e^{-ip \cdot x/\hbar}}{\sqrt{2\pi\hbar}} \,x \,\frac{e^{ip' \cdot x/\hbar}}{\sqrt{2\pi\hbar}} \,= \,-\frac{\hbar}{i} \frac{\partial}{\partial p} \,\int dx \,\frac{e^{i(p' - p) \cdot x/\hbar}}{2\pi\hbar} \,= \,-\frac{\hbar}{i} \frac{\partial}{\partial p} \,\delta(p - p') \\ p_{pp'} &= \int dx \,\frac{e^{-ip \cdot x/\hbar}}{\sqrt{2\pi\hbar}} \,\left(-i\hbar \frac{\partial}{\partial x}\right) \,\frac{e^{ip' \cdot x/\hbar}}{\sqrt{2\pi\hbar}} \,= \,p' \,\delta(p - p') \,= \,p \,\delta(p - p') \\ V(x)_{x_o x'_o} \,= \,V(x_o) \,\delta(x_o - x'_o) \end{aligned}$$

7.2. Zustandsvektoren; Dirac-Schreibweise

$$\succ$$
 Vektor $\mathbf{v} \in \mathcal{R}^3$ im Basissystem $\{\mathbf{e}_i\}$ oder $\{\mathbf{e}'_i\}$

$$\mathbf{v} = \sum_{i} v_{i} \mathbf{e}_{i} \qquad v_{i} = \mathbf{e}_{i} \cdot \mathbf{v}$$
$$\mathbf{v} = \sum_{i} v_{i}' \mathbf{e}_{i}' \qquad v_{i}' = \mathbf{e}_{i}' \cdot \mathbf{v} \qquad v_{i}' = \sum_{j} \mathbf{e}_{i}' \cdot \mathbf{e}_{j} v_{j} = \sum_{j} D_{ij} v_{j}$$

 $D_{ij} = \mathbf{e}'_i \cdot \mathbf{e}_j$... Überlappmatrix ... entspricht S^+

≻ Analoge Darstellung in der QM für einen Zustand $\psi(x)$

$$\psi(x) = \underbrace{\sum_{n} c_n \psi_n(x)}_{\text{Energiedarstellung, fallsEnergie-EF}} = \underbrace{\int d\xi c_{\xi} \psi_{\xi}(x)}_{\text{Ortsdarstellung}} = \underbrace{\int dp c_p \psi_p(x)}_{\text{Impulsdarstellung}}$$

Die Koeffizienten c_n , $c_{\xi} = c(\xi)$ and $c_p = c(p)$ sind die Komponenten der jeweiligen Darstellungen oder heißen kurz die Darstellungen.

7.2.a. Dirac-Notation

... von Basissystem unabhängige Vektorschreibweise

Erinnerung: Lineare Vektorräume

 \succ Summation und Multiplikation mit komplexen Zahlen α, β

$$\psi_c = \alpha \psi_a + \beta \psi_b \longrightarrow |c\rangle = \alpha |a\rangle + \beta |b\rangle$$

- 7. Darstellungstheorie
- \succ Eins- und Nullelement

 $1 \cdot \psi(x) = \psi(x) \longrightarrow 1 \cdot |\psi\rangle = |\psi\rangle; \qquad |\psi\rangle + |0\rangle = |\psi\rangle$

\succ Assoziativ- und Distributiv
gesetz:

$$\alpha \ (\beta \ |a\rangle) = (\alpha \cdot \beta) \ |a\rangle, \qquad (\alpha + \beta) \ |a\rangle = \alpha \ |a\rangle + \beta \ |a\rangle, \qquad \alpha (|a\rangle + |b\rangle) = \alpha \ |a\rangle + \alpha \ |b\rangle$$

\succ Dualer Vektorraum:

 $\psi(x) \longrightarrow |\psi\rangle$ dann $\psi^*(x) \longrightarrow \langle\psi|$ "Dirac - bra"

heißt der zu ψ duale Vektor.

Menge der dualen Vektoren bilden dann selbst offenbar ebenfalls einen linearen Vektorraum.

Produkt: $\langle a | \cdot | b \rangle \equiv \langle a | b \rangle$... Skalarprodukt

\succ Skalarprodukt:

 $\langle \psi_a | \psi_b \rangle = \langle a | b \rangle = \langle b | a \rangle^*$ $\langle a | a \rangle \ge 0 \qquad \text{verschwindet dann und nur dann, wenn} \qquad |a \rangle = 0$ $|\langle a | b \rangle|^2 \le \langle a | a \rangle \langle b | b \rangle$

Beispiel (Wichtige Skalarprodukte):

$$\langle m \mid n \rangle = \delta_{mn}, \qquad \langle x_o \mid x'_o \rangle = \delta(x_o - x'_o), \qquad \langle p \mid p' \rangle = \delta(p - p')$$

$$\langle x_o \mid \psi \rangle = \psi(x_o), \qquad \langle x_o \mid p \rangle = \langle p \mid x_o \rangle^* = \frac{e^{i p x_o/\hbar}}{\sqrt{2\pi \hbar}}$$

Beispiel (Entwicklung von Zuständen):

$$\begin{aligned} |\psi\rangle &= \sum_{n} c_{n} |n\rangle = \sum_{n} |n\rangle \langle n | \psi\rangle \\ &= \int d\xi c(\xi) |\xi\rangle = \int d\xi |\xi\rangle \langle \xi | \psi\rangle = \int dx c(x) |x\rangle = \int dx |x\rangle \langle x | \psi\rangle \\ &= \int dp c(p) |p\rangle = \int dp |p\rangle \langle p | \psi\rangle \end{aligned}$$

7.2.b. Operatoren in einem allgemeinen Zustandsraum

≻ Sei $\{|n\rangle\}$ eine beliebige Basis:

$$A \psi_a = \psi_b \longrightarrow A |a\rangle = |b\rangle, \qquad A |a\rangle = \sum_{\substack{n \\ 1}} |n\rangle \langle n| |b\rangle = \sum_{\substack{n \\ 1}} |n\rangle \langle n|A|a\rangle = \sum_{\substack{n \\ n}} |n\rangle A_{na}$$

> Projektions
operator $P^2 = P$ Projektion auf normierten Zustand
 $|a\rangle$

 $P_a |\psi\rangle = |a\rangle \langle a |\psi\rangle \quad \forall |a\rangle \quad \text{daher} \quad P_a = |a\rangle \langle a|$

> Vollständiges Orthonormal
system: $\langle m \mid n \rangle = \delta_{mn}$

$$\sum_{n} |n\rangle \langle n| = 1 \qquad \dots \text{Vollstaendigkeits relation}$$

$$\sum_{n} \psi_{n}(x)\psi_{n}^{*}(x') = \left\langle x \left| \left(\sum_{n} |n\rangle \langle n| \right) \right| x' \right\rangle = \left\langle x | x' \right\rangle = \delta(x - x')$$

 \succ Analog gilt im Kontinuum:

$$\int d\xi \ |\xi\rangle \ \langle\xi| = 1, \qquad \int dp \ |p\rangle \ \langle p| = 1$$

 \blacktriangleright Darstellung eines Operators durch Matrix
elemente

$$A = \sum_{mn} |m\rangle \underbrace{\langle m |A| n \rangle}_{A_{mn}} \langle n| = \sum_{mn} A_{mn} |m\rangle \langle n|$$

Operator wirkt stets auf 'rechten' Vektor

7.2.c. Adjungierter Operator zu A

 $> \text{Aus Definition } \langle b | A | a \rangle^* = \langle a | A^+ | b \rangle \text{ folgt} \\ |d\rangle = A |c\rangle = \sum_n |n\rangle \langle n | A | c \rangle \\ \langle d| = \sum_n \langle n | (\langle n | A | c \rangle)^* = \sum_n \langle n | (\langle c | A^+ | n \rangle) = \sum_n \langle c | A^+ | (n \rangle \langle n |) = \langle c | A^+ \\ \text{Wie bisher: } A \text{ heißt hermitesch, wenn } A^+ = A \text{ gilt.}$

7.3. Orts- und Impulsdarstellung von Zustandsvektoren

7.3.a. Axiome der QM

Nun in Dirac-Schreibweise:

- i) Zustand eines Systems wird durch einen (normierten) Zustandsvektor $|\psi\rangle$ beschrieben.
- ii) Observablen werden hermitesche Operatoren zugeordnet: $A = A^+$;

Mittelwerte der Observablen: $\langle A \rangle = \langle \psi | A | \psi \rangle$

Bei Messung von $A: \quad |\psi\rangle \longrightarrow |n\rangle$, wenn der EW a_n gemessen wird.

- iii) Zeitentwicklung des Zust andsvektors folgt der SG: $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle \equiv H |\psi,t\rangle$
- iv) Zusammengesetzte Systeme: $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes ...$

7.3.b. Stationäre Zustände

$$\succ \text{Für } H \neq H(t): \qquad H |\psi_n\rangle = E_n |\psi_n\rangle$$

$$\succ |\psi_n(t)\rangle = e^{-iE_n t/\hbar} |\psi_n\rangle$$

$$\succ \text{Für } |\psi\rangle \equiv |\psi(t=0)\rangle = \sum |\psi_n\rangle \langle\psi_n |\psi\rangle \quad \text{folgt} \quad |\psi(t)\rangle = \sum_n e^{-iE_n t/\hbar} |\psi_n\rangle \langle\psi_n |\psi\rangle$$

7.3.c. Ortsdarstellung

 $\succ \langle x | \psi(t) \rangle = \psi(x,t) \qquad \langle x | \dots \text{ zeitunabhängig, Multiplikation von links}$ $i\hbar \frac{\partial}{\partial t} \langle x | \psi(t) \rangle = \int dx' \langle x | H | x' \rangle \langle x' | \psi(t) \rangle = \int dx' \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \delta(x - x') + V(x) \delta(x - x') \right] \psi(x',t)$ $i\hbar \frac{\partial}{\partial t} \psi(x,t) = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x,t)$

SG in Ortsdarstellung

7.3.d. Impulsdarstellung

$$\succ \langle p \mid \psi(t) \rangle = c_p(t) = \frac{\phi(p,t)}{\sqrt{2\pi\hbar}}$$
$$i\hbar \frac{\partial}{\partial t} c_p(t) = \int dp' \langle p \mid H \mid p' \rangle \langle p' \mid \psi(t)$$

$$\succ \text{ Mit } p_{pp'} = \int dx \, e^{ipx} \, e^{-ip'x} = p \, \delta(p - p') \text{ und } V(x)_{x_o, x'_o} = V(x_o) \, \delta(x_o - x'_o) \text{ ist}$$

$$\langle p \, |H| \, p' \rangle = \frac{p^2}{2m} \, \delta(p - p') \, + \, \int dx \, dx' \, \langle p \, | \, x \rangle \underbrace{\langle x \, |V(x)| \, x' \rangle}_{\sim V(x) \, \delta(x - x')} \, \langle x' \, | \, p' \rangle = \frac{p^2}{2m} \, \delta(p - p') \, + \, \int dx \, V(x) \, \frac{e^{-i(p - p') \, x/\hbar}}{2\pi \, \hbar}$$

und mit der Definition:

$$\tilde{V}(q) = \int dx \, e^{-i q \, x/\hbar} \, V(x)$$
$$i \hbar \frac{\partial}{\partial t} \phi(p,t) = \frac{p^2}{2m} \phi(p,t) + \int \frac{dp'}{2\pi \, \hbar} \, \tilde{V}(p - p') \, \phi(p',t)$$

SG in Impulsdarstellung

7.3.e. Darstellung in einer diskreten Basis

 \succ Projektion auf diskretes Basis
system

$$\langle n | \psi(t) \rangle = c_n(t),$$
 $i\hbar \frac{\partial}{\partial t} \langle n | \psi(t) \rangle = \sum_{m'} \langle n | H | m' \rangle \langle m' | \psi(t) \rangle$ bzw.

$$i\hbar \frac{d}{dt} c_n(t) = \sum_{m'} H_{nm'} c_{m'}(t)$$

SG ... zeitabhängiges, lineares Gleichungssystem: "gekoppelte Kanäle"

 \succ Für Basissysteme mit diskreten und kontinuierlichen Spektren:

$$\sum_m \dots \longrightarrow \sum_m \int \dots$$

7. Darstellungstheorie

7.4. Vielteilchensysteme

> 1-dimensional: $|\psi\rangle = \int du |u\rangle \psi(u) = \int du |u\rangle \langle u | \psi\rangle, \qquad u = \{x, p, ...\}$

> 3-dimensional: $|\mathbf{u}\rangle \longrightarrow |u_x\rangle |u_y\rangle |u_y\rangle$

$$\begin{aligned} x_i &|\mathbf{u}\rangle = u_i &|\mathbf{u}\rangle, \qquad i = x, y, z; \qquad \langle \mathbf{u} &| \mathbf{u}'\rangle = \delta^{(3)}(\mathbf{u} - \mathbf{u}') = \delta(u_x - u'_x) \,\delta(u_y - u'_y) \,\delta(u_y - u'_y) \\ &|\psi\rangle = \int d^3 u &|\mathbf{u}\rangle \,\langle \mathbf{u} &| \psi\rangle \end{aligned}$$

≻ N-Teilchenzustand $|\mathbf{r}_i\rangle, i = 1, 2, ..., N$ seien Einteilchen-Ortszustände

dann N-Teilchenzustand und Orthogonalitätsrelation

$$|\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3,...,\mathbf{r}_N
angle \;=\; |\mathbf{r}_1
angle\; |\mathbf{r}_2
angle\; |\mathbf{r}_3
angle\;...\; |\mathbf{r}_N
angle \;=\; |\mathbf{r}_1
angle \otimes |\mathbf{r}_2
angle \otimes |\mathbf{r}_3
angle \otimes ...\otimes |\mathbf{r}_N
angle$$

 $\langle \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ..., \mathbf{r}_N \mid \mathbf{r}'_1, \mathbf{r}'_2, \mathbf{r}'_3, ..., \mathbf{r}'_N \rangle \ = \ \delta^{(3)}(\mathbf{r}_1 \ - \ \mathbf{r}'_1) \ \delta^{(3)}(\mathbf{r}_2 \ - \ \mathbf{r}'_2) \ \delta^{(3)}(\mathbf{r}_1 \ - \ \mathbf{r}'_1) \ ... \ \delta^{(3)}(\mathbf{r}_N \ - \ \mathbf{r}'_N)$

 \succ Beliebige Zustände folgen aus geeigneten Linearkombinationen der Ortszustände.

 \rightsquigarrow bisherige Formeln können daher in unmittelbarer Analogie auch im mehrdimensionalen Fall und für Vielteilchensysteme verwendet werden.

7.5. Schrödinger- und Heisenbergdarstellung

7.5.a. Zeitunabhängiger Hamiltonoperator $H \neq H(t)$

SG: (= Bewegungsgleichung für Quantenzustände) wird formal gelöst durch

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle \iff |\psi(t)\rangle = e^{-\frac{i}{\hbar}Ht} |\psi(0)\rangle = U(t) |\psi(0)\rangle = U(t,t') |\psi(t')\rangle$$

 $\langle \psi(t) |A_S| \psi(t)\rangle$
Schrödinger-Darstellung, Schrödinger-Bild

Zustände: zeitabhängig
 Operatoren: zeitunabhängig, außer im Falle einer expliziten Zeitabhängigkeit

7.5.b. Heisenberg-Darstellung

- ≻ Im Heisenberg-Bild sind die Operatoren zeitabhängig und die Lösungen einer Bewegungsgleichung
- > Heisenberg-Operatoren: $A_H = e^{iHt/\hbar} A e^{-iHt/\hbar}$

$$\frac{d}{dt} A_{H} = \frac{i H}{\hbar} e^{iHt/\hbar} A e^{-iHt/\hbar} - e^{iHt/\hbar} A \left(\frac{i}{\hbar}\right) H e^{-iHt/\hbar} + e^{iHt/\hbar} \left(\frac{\partial}{\partial t} A\right) e^{-iHt/\hbar}$$
$$\frac{d}{dt} A_{H} = \frac{i}{\hbar} [H, A_{H}] + \frac{\partial}{\partial t} A_{H}$$

Heisenberg-Gleichung für Operator A_H (= Bewegungsgleichung für Heisenbergoperatoren)

7. Darstellungstheorie

 \succ Term $\frac{\partial A_{H}}{\partial t}$ tritt nur auf, wenn A explizit zeitabhängig ist , denn

$$e^{iHt/\hbar} \left(\frac{\partial}{\partial t} A(x, p, ..., t)\right) e^{-iHt/\hbar} = \frac{\partial}{\partial t} A \left(x_H(t), p_H(t), ..., t\right) = \frac{\partial A_H}{\partial t}$$

 $\succ \text{Heisenberg-Zustandsvektor:} \quad |\psi\rangle_H = e^{iHt/\hbar} |\psi(t)\rangle \equiv e^{iHt/\hbar} |\psi,t\rangle = e^{iHt/\hbar} e^{-iHt/\hbar} |\psi(0)\rangle = |\psi(0)\rangle$

ist zeitunabhängig und identisch mit Anfangszustand $|\psi(0)\rangle$ der SG.

Unitäre Transformation: Zustände im Schrödinger- und Heisenberg-Bild hängen über eine unitäre Transformation zusammen und ergeben das gleiche physikalische Resultat, insbesondere (Erwartungswert/Meßstatistik)

$$\langle \psi(t) | A_S | \psi(t) \rangle = \langle \psi_H | e^{iH t/\hbar} A e^{-iH t/\hbar} | \psi_H \rangle = \langle \psi_H | A_H | \psi_H \rangle$$

≻ Hamiltonoperator in der Heisenberg-Darstellung:

$$H_H = e^{iHt/\hbar} H e^{-iHt/\hbar} = H,$$
 $H = H(x,p) = H_H = H(x_H(t), p_H(t))$

Beispiel (1-dimensionaler harmonischer Oszillator): $H = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$ hat im Heisenbergbild die Bewegungsgleichungen, deren Struktur analog zu den klassischen Bewegungsgleichungen ist:

$$\dot{x}_H = \frac{i}{\hbar} [H_H, x_H] = \frac{p_H}{m}, \qquad \dot{p}_H = \frac{i}{\hbar} [H_H, p_H] = -m\omega^2 x_H$$

7.5.c. Erhaltungssätze

Im Heisenberg-Bild:

Klassische Me	echanik:	Symmetrie eines Sys	tems	\iff	Erhaltungssätze		
Erhaltungsgrößen:						Erz	eugende einer:
H:	$\frac{d}{dt} H_H = \frac{i}{\hbar} \left[\right]$	$H_H, H_H] = 0$	fuer zeitunabh	. H – Operator	$\mathbf{r} \ H \ \neq \ H(t)$	$e^{\pm i H t/\hbar}$	Zeittranslation
$\mathbf{L}:$	$\frac{d}{dt} \mathbf{L}_H = \frac{i}{\hbar} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$H_H, \mathbf{L}_H = 0$	falls System ro	tationsinvariar	nt	$e^{i \boldsymbol{\varphi} \cdot \mathbf{L}/\hbar}$	Rotation

 $\mathbf{L}: \quad \frac{d}{dt} \mathbf{L}_{H} = \frac{i}{\hbar} [H_{H}, \mathbf{L}_{H}] = 0 \qquad \text{falls System rotations invariant} \qquad e^{i \boldsymbol{\varphi} \cdot \mathbf{L}/\hbar} \quad \dots \text{ Rotation}$ $\mathbf{p}: \quad \frac{d}{dt} \mathbf{p}_{H} = \frac{i}{\hbar} [H_{H}, \mathbf{p}_{H}] = 0 \qquad \text{falls System translations invariant} \qquad e^{i \mathbf{a} \cdot \mathbf{p}/\hbar} \quad \dots \text{ Translation}$

Vielteilchensysteme:

Impuls: $\mathbf{P}_{H} = \sum_{n=1}^{N} \mathbf{p}_{n,H}$ Drehimpuls: $\mathbf{L}_{H} = \sum_{n=1}^{N} \mathbf{x}_{n,H} \times \mathbf{p}_{n,H} = \sum_{n=1}^{N} \mathbf{l}_{n,H}$

Schwerpunktsatz: für translationsinvariante Systeme mit Gesamtmasse $M = \sum_{n=1}^{N} m_n$

$$\mathbf{R}_H(t) = \frac{\mathbf{P}_H(t)}{M} + \mathbf{R}_H(0) = \frac{1}{M} \sum_{n=1}^N m_n \mathbf{x}_{n,H}$$

7. Darstellungstheorie

7.5.d. Wechselwirkungsdarstellung (Dirac-Darstellung)

 \succ Viele Systeme folgen Hamiltonoperator: $H = H_o + V(t)$

zeitunabhängig zeitabhängig,

dann (Dirac's) Wechselwirkungsbild zweckmäßig als Ausgangspunkt der zeitabhängigen Störungstheorie.

- ➤ Zustände und Operatoren in der WW-Darstellung (interaction representation):
 - ... folgen den Bewegungsgleichungen

$$\begin{aligned} |\psi(t)\rangle_I &= e^{iH_o t/\hbar} |\psi(t)\rangle, \qquad \qquad A_I(t) &= e^{iH_o t/\hbar} A e^{-iH_o t/\hbar} \\ i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle_I &= V_I(t) |\psi(t)\rangle_I, \qquad \qquad \frac{d}{dt} A_I(t) &= \frac{i}{\hbar} [H_o, A_I(t)] + \frac{\partial}{\partial t} A_I(t) \end{aligned}$$

In der WW-Darstellung sind sowohl die Zustände als auch Operatoren zeitabhängig; die Zustände entwickeln sich gemäß der Störung V(t) und die Operatoren gemäß H_o .

7.6. Aufgaben

Siehe Übungen.

8. Spin

8.1. Stern-Gerlach Versuch und normaler Zeeman-Effekt

Stern-Gerlach: Atomstrahl tritt durch ein inhomogenes Magnetfeld.

 $\mathbf{F} = \boldsymbol{\nabla} (\boldsymbol{\mu} \cdot \mathbf{B}) = \mu_z \frac{\partial B}{\partial z} \mathbf{e}_z \qquad \qquad \mathbf{B} || \mathbf{e}_z$

Magnetische Moment:

 $\boldsymbol{\mu} = \frac{e}{2mc}$ gyromagnetisches Verhaeltnis $\frac{|\boldsymbol{\mu}|}{|\mathbf{L}|} = \frac{e}{2mc}$

Klassische Vermutung

 $\boldsymbol{\mu} \sim \mathbf{L}$ bzw. $\mu_z \sim L_z$

 \rightarrow Atomstrahl sollte in $2\ell + 1$ Teilstrahlen aufspalten: ungerade Anzahl !

Experiment: Silber hat eine [Kr] $4d^{10} 5s \equiv 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s$ Elektronenkonfiguration und daher kugelsymmetrische Ladungsverteilung, $\ell = 0 \quad \rightsquigarrow \quad$ klassisch wird keine Aufspaltung vermutet.

 \mathbf{L}

Aufspaltung verständlich: falls 5s-Elektron einen halbzahligen, inneren Drehimpuls (Spin) besitzt.

We check wirkungsterm in Hamilton function/operator: $H_{\text{int}} = -\frac{e}{2mc} (\mathbf{B} \cdot \mathbf{L}) = -\boldsymbol{\mu} \cdot \mathbf{B}$

8. Spin

8.2. Elektronenspin s = 1/2

> Analog zum Drehimpuls mit Operator $\mathbf{L} = (L_x, L_y, L_z)$ betrachten wir den Spinoperator

$$\mathbf{S} = (S_x, S_y, S_z) = S_x \mathbf{e}_x + S_y \mathbf{e}_y + S_z \mathbf{e}_z$$

der in jeder Raumrichtung $\mathbf{e_n}$ stets nur die beiden Eigenwerte $\pm \frac{\hbar}{2}$ besitzt.

$$\mathbf{S} \cdot \mathbf{e_n} | \mathbf{e_n}, \pm \rangle = \pm \frac{\hbar}{2} | \mathbf{e_n}, \pm \rangle, \qquad \mathbf{S}^2 | \mathbf{e_n}, \pm \rangle = \frac{3}{4} \hbar^2 | \mathbf{e_n}, \pm \rangle$$

 \succ Betrachten ohne Einschränkung: $\mathbf{e}_{\mathbf{n}} = \mathbf{e}_{z}$... Festlegung einer Quantisierungsachse, dann übliche Schreibweisen

$$\begin{aligned} |\mathbf{e}_{z},+\rangle &= |z,+\rangle &= |\uparrow\rangle &= |\alpha\rangle &= |\chi_{1/2}\rangle &= |0\rangle &= \dots \\ |\mathbf{e}_{z},-\rangle &= |z,-\rangle &= |\downarrow\rangle &= |\beta\rangle &= |\chi_{-1/2}\rangle &= |1\rangle &= \dots \end{aligned}$$

➤ Da der Spin eine physikalische Meßgröße ist, sind S, S_z hermitesch und ihre EF sind orthonormal bzw. können so gewählt werden.

$$\langle \uparrow | \downarrow \rangle = \langle \alpha | \beta \rangle = 0, \qquad \qquad \langle \uparrow | \uparrow \rangle = \langle \alpha | \alpha \rangle = \langle \downarrow | \downarrow \rangle = \langle \beta | \beta \rangle = 1$$

 \succ Da der Spin die Eigenschaft eines Drehimpulses besitzt, gilt ferner:

$$S_{i}, S_{j}] = i\hbar \epsilon_{ijk} S_{k}, \qquad [S_{z}, S_{\pm}] = \pm \hbar S_{\pm}, \qquad [S_{+}, S_{-}] = 2\hbar S_{z}$$
$$S_{\pm} = (S_{x} \pm i S_{y}) \qquad \Longleftrightarrow \qquad S_{x} = (S_{+} + S_{-}); \qquad S_{y} = \frac{1}{2i} (S_{+} - S_{-})$$

Matrixdarstellung des Spins: Aus bekannten Eigenschaften von S_z und der Leiteroperatoren folgt:

$$S_{+} |\uparrow\rangle = 0$$

$$S_{+} |\downarrow\rangle = \hbar |\uparrow\rangle$$

$$S_{-} |\uparrow\rangle = \hbar |\downarrow\rangle$$

$$S_{-} |\uparrow\rangle = 0$$

$$S_{-} |\uparrow\rangle = 0$$

$$S_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad S_{-} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad S_{x}, S_{y} = \dots$$
Spinmatrizen

 \succ Paulimatrizen: ... Paulische Spinmatrizen

$$\mathbf{S} = \frac{\hbar}{2}\boldsymbol{\sigma}, \qquad \boldsymbol{\sigma} = \sigma_x \mathbf{e}_x + \sigma_y \mathbf{e}_y + \sigma_z \mathbf{e}_z$$
$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

Pauli-Matrizen = Spinmatrizen in der Basis $|\uparrow\rangle$, $|\downarrow\rangle$

Beispiel eines endlich-dimensionalen Zustandsraumes.

8.3. Eigenschaften der Pauli-Matrizen

 $\begin{aligned} \sigma_x^2 &= \sigma_y^2 = \sigma_z^2 = \mathbb{1} & \text{Einheitsmatrix,} \\ [\sigma_x, \sigma_y] &= 2i \, \sigma_z, & \{\sigma_x, \sigma_y\} = 0 & \dots \text{ und jeweils zyklisch} \\ \sigma_x \, \sigma_y \, \sigma_z &= i \, \mathbb{1}, & \text{Sp} \, \sigma_x = \text{Sp} \, \sigma_y = \text{Sp} \, \sigma_z = 0, & \det \sigma_x = \det \sigma_y = \det \sigma_z = -1 \\ \sigma_i \cdot \sigma_j &= \delta_{ij} + i \, \epsilon_{ijk} \, \sigma_k, & (\boldsymbol{\sigma} \cdot \mathbf{a}) \, (\boldsymbol{\sigma} \cdot \mathbf{b}) = (\mathbf{a} \cdot \mathbf{b}) \, \mathbb{1} + i \, \boldsymbol{\sigma} \, (\mathbf{a} \times \mathbf{b}) \\ & \text{für beliebige Vektoren } \mathbf{a}, \mathbf{b}, \text{für die } [\mathbf{a}, \boldsymbol{\sigma}] = [\mathbf{b}, \boldsymbol{\sigma}] = 0 \text{ gilt.} \end{aligned}$

8.4. Spinzustände

Allgemeiner Spinzustand: $|\chi\rangle = c_+ |\uparrow\rangle + c_- |\downarrow\rangle$ c_{\pm} ... komplexe Koeffizienten; $|c_+|^2 + |c_-|^2 = 1$ Spinoren: Alternative Schreibweise mithilfe zweispaltiger Zeilenvektoren, deren Koeffizienten aus der Projektion auf das Basissystem $\{|\uparrow\rangle, |\downarrow\rangle\}$ hervorgehen:

$$|\chi\rangle = \begin{pmatrix} c_+\\ c_- \end{pmatrix}, \qquad c_+ = \langle\uparrow|\chi\rangle, \qquad c_- = \langle\downarrow|\chi\rangle, \qquad |\chi_+\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \qquad |\chi_-\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Basisspinoren

Vollständigkeitsrelation:

$$|\uparrow\rangle\langle\uparrow| + |\downarrow\rangle\langle\downarrow| = \mathbb{1} = \chi_+ \chi_+^+ + \chi_- \chi_-^+ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \dots \text{Matrixdarstellung}$$

8.5. Magnetische Momente

 \succ Elektrodynamik: Elektron mit Bahndrehimpuls L hat magnetisches Moment, daher sollte auch der Spin S zum magnetische Moment beitragen:

$$\boldsymbol{\mu}_{\text{Bahn}} = \frac{e}{2mc} \mathbf{L} \qquad \Longrightarrow \qquad \boldsymbol{\mu}_{\text{Spin}} = g \frac{e}{2mc} \mathbf{S}$$

$$g \dots \text{Lande-Faktor (gyromagnetischer Faktor)}$$

➢ Quantitative Analyse des Zeeman-Effektes liefert: $g_{\text{Elektron}} \approx 2$

 \succ Magnetisches Gesamtmoment:

$$\boldsymbol{\mu} = \boldsymbol{\mu}_{\text{Bahn}} + \boldsymbol{\mu}_{\text{Spin}} = \frac{e}{2mc} \left(\mathbf{L} + 2\mathbf{S} \right) = \frac{e}{2mc} \left(\mathbf{L} + \boldsymbol{\sigma} \, \hbar \right)$$

 \succ Wechselwirkungsenergie mit Magnetfeld:

$$H_{\text{int}} = -\boldsymbol{\mu} \cdot \mathbf{B} = \mu_B \left(\frac{\mathbf{L}}{\hbar} + \boldsymbol{\sigma}\right) \cdot \mathbf{B}, \qquad \mu_B = \frac{e\hbar}{2m_e c} \qquad \dots \text{ Bohrsches Magneton}$$

Korrekte Theorie: Anmerkungen

8. Spin

- i) Dirac-Gleichung: Verwendung der relativistischen Wellengleichung (SG) für Spin-1/2 Teilchen (Fermionen) liefert: g = 2
- ii) Moderne Feldtheorie kennt keine isolierten Teilchen, sondern nur ständige schwache Kopplungen an das Vakuum

QED: Quantenelektrodynamik, oftmals störungstheoretisch in α behandelt.

QED Korrekturen: $\mathcal{O}(\alpha^3)$

$$g = 2\left(1 + \frac{\alpha}{2\pi} - 0.328478445\left(\frac{\alpha}{\pi}\right)^2 + 1.183(11)\left(\frac{\alpha}{\pi}\right)^3 + \ldots\right) = \underbrace{2.002319}_{\text{exp. gesichert}} 304718(564)..$$

Kernmagneton: $\mu_K = \frac{e\hbar}{2m_p c}$ m_p Protonenmasse

... charakteristisches Maß für den Kernmagnetismus und die magnetischen Momente der Nukleonen.

Proton: $\mu_{\text{Proton}} \approx 5.59 \,\mu_K$ Neutron: $\mu_{\text{Neutron}} \approx -3.83 \,\mu_K$

Deuteron: $\mu_{\text{Deuteron}} \approx 0.86 \,\mu_K \approx \mu_{\text{Proton}} + \mu_{\text{Neutron}}$

8.6. Spin vs. Ortsvariablen

- ≻ Vertauschbarkeit: Spin und Ort <u>bzw.</u> Spin und Impuls können gleichzeitig scharfe (Meß-) Werte haben:
 - $[\mathbf{S}, \mathbf{x}] = 0, \qquad [\mathbf{S}, \mathbf{p}] = 0, \qquad [\mathbf{S}, \mathbf{L}] = 0$
- $\succ \text{Gesamtzustände} \quad \dots \text{ Basis als direktes Produkt von Orts- und Spineigenzuständen;}$ mögliche und übliche Basis: $|\mathbf{r}\rangle |\uparrow\rangle = |\mathbf{r},\uparrow\rangle \equiv |\mathbf{r}\rangle \otimes |\uparrow\rangle, \qquad |\mathbf{r}\rangle |\downarrow\rangle \equiv |\mathbf{r}\rangle \otimes |\downarrow\rangle$
- \succ Allgemeiner Zustand:

$$|\psi\rangle = \int d^3r \, (|\mathbf{r},\uparrow\rangle \, \langle \mathbf{r},\uparrow | \psi\rangle \, + \, |\mathbf{r},\downarrow\rangle \, \langle \mathbf{r},\downarrow | \psi\rangle) = \int d^3r \, (|\mathbf{r},\uparrow\rangle \, \psi_+(\mathbf{r}) \, + \, |\mathbf{r},\downarrow\rangle \, \psi_-(\mathbf{r}))$$

 $|\psi_{\pm}(\mathbf{r})|^2$... Wahrscheinlichkeit, das Teilchen an der Stelle \mathbf{r} mit Spin 'up' oder 'down' (in z-Richtung) zu finden.

➤ Normierungsbedingung:

$$\langle \psi | \psi \rangle = \int d^3r \left(|\psi_+(\mathbf{r})|^2 + |\psi_-(\mathbf{r})|^2 \right) = 1$$

 \succ Spinordarstellung: Die beiden Komponenten $\psi_{\pm}(\mathbf{r})$ können in einem Spinor zusammengefaßt werden:

$$\langle \mathbf{x} | \psi \rangle = \psi(\mathbf{x}) = \begin{pmatrix} \psi_{+}(\mathbf{r}) \\ \psi_{-}(\mathbf{r}) \end{pmatrix}; \qquad \psi^{+}(\mathbf{x}) = (\psi^{*}_{+}(\mathbf{r}), \psi^{*}_{-}(\mathbf{r})); \qquad \text{adjungierterSpinor}$$

$$\psi(\mathbf{x})|^{2} = \psi^{+}(\mathbf{x}) \psi(\mathbf{x}) = |\psi_{+}(\mathbf{x})|^{2} + |\psi_{-}(\mathbf{x})|^{2}$$

8.7. Kopplung von Drehimpulsen

8.7.a. Gesamtdrehimpuls eines Spin-1/2 Teilchen

Elektronen, Protonen, etc.

- ≻ Hilbertraum: Produkt aus (räumlichen) Funktionenraum und Spinraum
 - $|\mathbf{r},\,\pm
 angle \;\;=\;\;|\mathbf{r}
 angle \;\otimes\;|\uparrow,\downarrow
 angle; \qquad \qquad \mathcal{H}\;=\;\{|\mathbf{r},\,\pm
 angle\}\;=\;\mathcal{H}_p\;\otimes\;\mathcal{H}_2$
- \succ Drehimpulsoperatoren:
 - $\mathbf{J} = \mathbf{L} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{S} = \mathbf{L} + \mathbf{S}, \qquad [L_i, L_j] = i\hbar \,\epsilon_{ijk} \, L_k, \qquad [S_i, S_j] = i\hbar \,\epsilon_{ijk} \, S_k, \qquad [L_i, S_j] = 0,$
- \succ Eigenwerte : ... Raumquantelung der einzelnen und des gesamten Drehimpulses
 - $|\ell s| \leq j \leq \ell + s;$ $m_j = -j, -j+1, ..., j$
- \succ Drehoperator im Produktraum:
 … n sei ein Einheitsvektor entlang der Drehachse

$$U_R(\mathbf{n},\vartheta) = \exp\left(\frac{-i\mathbf{j}\cdot\mathbf{n}\,\vartheta}{\hbar}\right) = \exp\left(\frac{-i\mathbf{l}\cdot\mathbf{n}\,\vartheta}{\hbar}\right) \exp\left(\frac{-i\mathbf{s}\cdot\mathbf{n}\,\vartheta}{\hbar}\right) .$$

 \succ Wellenfunktionen im Produktraum: Superposition der beiden Spinkomponenten

$$\psi(\mathbf{r},\sigma) = \begin{pmatrix} \psi_{\uparrow}(\mathbf{r}) \\ \psi_{\downarrow}(\mathbf{r}) \end{pmatrix} = \psi_{\uparrow}(\mathbf{r}) |\uparrow\rangle + \psi_{\downarrow}(\mathbf{r}) |\downarrow\rangle = \underbrace{\psi_{0} |0\rangle + \psi_{1} |1\rangle}_{\text{QIP}} = \underbrace{\psi_{\alpha} |\alpha\rangle + \psi_{\beta} |\beta\rangle}_{\text{quantum chemistry}} .$$

 \succ Operatoren und Produktzustände des Gesamtsystems, ... falls dessen ZUstände diagonal sind in $\{l^2, l_z, s^2, s_z\}$

$$\begin{split} \ell, s, m_{\ell}, m_{s} \rangle &= |\ell, m_{\ell} \rangle |s, m_{s} \rangle &= |\ell s m_{\ell} m_{s} \rangle \\ \mathbf{l}^{2} |\ell m_{\ell} \rangle &= \ell(\ell+1) \hbar^{2} |\ell m_{\ell} \rangle , \qquad l_{z} |\ell m_{\ell} \rangle &= m_{\ell} \hbar |\ell m_{\ell} \rangle \\ \mathbf{s}^{2} |s m_{s} \rangle &= s(s+1) \hbar^{2} |s m_{s} \rangle , \qquad s_{z} |s m_{s} \rangle &= m_{s} \hbar |s m_{s} \rangle \end{split}$$

(sogenannten) 'ungekoppelte' Basis oder Produktbasis

 $m_1 \hbar | j_1 m_1, j_2 m_2 \rangle$

- ≻ Gesamte Spin-Bahn Bewegung der Elektronen: ... kann mittels verschiedener Sätze kommutierenden Operatoren klassifiziert werden: $\{l^2, l_z, s^2, s_z\}$ or $\{l^2, s^2, j^2, j_z\}$
- \succ 'Gekoppelte' Basis:
 $|\ell sjm_j\rangle$... erfüllen die bekannten Eigenwertgleichungen

$$\mathbf{l}^{2} | \ell s j m_{j} \rangle = l(l+1) \hbar^{2} | \ell s j m_{j} \rangle , \qquad \qquad \mathbf{j}^{2} | \ell s j m_{j} \rangle = j(j+1) \hbar | \ell s j m_{j} \rangle$$
$$\mathbf{s}^{2} | \ell s j m_{j} \rangle = \frac{3}{4} \hbar^{2} | \ell s j m_{j} \rangle , \qquad \qquad j_{z} | \ell s j m_{j} \rangle = m_{j} \hbar | \ell s j m_{j} \rangle$$

8.7.b. Kopplung von zwei Drehimpulses

Produkt- vs. gekoppelte Basiszustände:

≻ Betrachten zwei Drehimpulse $\{\mathbf{j}_1^2, j_{1z}, \mathbf{j}_2^2, j_{2z}\}$ mit der Produktbasis und bekannten EW-Gleichungen $|j_1m_1, j_2m_2\rangle$

$$\mathbf{j}_{1}^{2} | j_{1}m_{1}, j_{2}m_{2} \rangle = j_{1}(j_{1}+1) \hbar^{2} | j_{1}m_{1}, j_{2}m_{2} \rangle, \qquad j_{1z} | j_{1}m_{1}, j_{2}m_{2} \rangle =$$

8. Spin

▶ Produktraum wird als Tensorraum von einem vollständigen Satz von $(2j_1 + 1)(2j_2 + 1)$ Produktfunktionen aufgespannt:

$$\dim(\mathfrak{h}_{j_1,j_2}) = \dim(\mathfrak{h}_{j_1}) \cdot \dim(\mathfrak{h}_{j_2}) = (2j_1+1) (2j_2+1), \qquad \mathfrak{h}_{j_1,j_2} = \mathfrak{h}_{j_1} \otimes \mathfrak{h}_{j_2}$$
$$\sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} |j_1m_1, j_2m_2\rangle \langle j_1m_1, j_2m_2| = 1$$
$$\langle j_1m_1, j_2m_2 | j'_1m'_1, j'_2m'_2\rangle = \delta_{j_1,j'_1} \delta_{j_2,j'_2} \delta_{m_1,m'_1} \delta_{m_2,m'_2}$$

Clebsch-Gordan Entwicklung:

≻ Wechsel zwischen gekoppelter und ungekoppelter (Produkt-) Basis; diese Transformation ist gegeben als:

$$|j_{1}j_{2}jm_{j}\rangle = \sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}} |j_{1}m_{1}j_{2}m_{2}\rangle \langle j_{1}m_{1}, j_{2}m_{2} | j_{1}j_{2}jm_{j}\rangle$$

$$|j_{1}m_{1}j_{2}m_{2}\rangle = \sum_{j=|j_{1}-j_{2}|}^{j_{1}+j_{2}} \sum_{m_{j}=-j}^{j} |j_{1}j_{2}jm_{j}\rangle \langle j_{1}j_{2}jm_{j} | j_{1}m_{1}, j_{2}m_{2}\rangle$$

Clebsch-Gordan Koeffizienten $\equiv \langle j_1 m_1, j_2 m_2 | j m_j \rangle = C_{j_1 m_1, j_2 m_2}^{jm} = C(j_1 j_2 j; m_1 m_2 m)$

- ➤ Die Clebsch-Gordan Koeffizienten sind (spezielle) Fourierkoeffizienten, die beim Basiswechsel zwischen zwei orthogonalen Basen auftreten.
- ➤ Diese Koeffizienten treten sehr häufig bei der Beschreibung von Multi-Qubit bzw. (atomaren und molekularen) Vielteilchensystemen auf, aber auch an vielen anderen Stellen.

➤ Gruppentheorie: Das Tensorprodukt zweier Darstellungen \mathfrak{h}_{j_1} und \mathfrak{h}_{j_2} verschiedener Drehimpulse kann allgemein in eine Summe irreduzibler Darstellungen des Gesamtdrehimpulses zerlegt werden:

$$\mathfrak{h}_{j_1}\otimes\mathfrak{h}_{j_2} = \mathfrak{h}_{j_1+j_2} \oplus \mathfrak{h}_{j_1+j_2-1} \oplus ... \oplus \mathfrak{h}_{|j_1-j_2|}.$$

8.8. Elektronen in äußeren Feldern

8.8.a. Elektronen im äußeren Magnetfeld

► Hamiltonoperator:

$$H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) + \mu_B \left(\frac{\mathbf{L}}{\hbar} + \boldsymbol{\sigma}\right) \cdot \mathbf{B} + \text{Spin} - \text{Bahn} - \text{WW}$$

➤ SG: $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle$ in Komponentenform:

$$i\hbar\frac{\partial}{\partial t}\left(\begin{array}{c}\psi_{+}(\mathbf{r},t)\\\psi_{-}(\mathbf{r},t)\end{array}\right) = \left[\left(-\frac{\hbar^{2}}{2m}\boldsymbol{\nabla}^{2} + V(\mathbf{r}) + \frac{\mu_{B}}{\hbar}\mathbf{L}\cdot\mathbf{B}\right)\mathbb{1} + \mu_{B}\boldsymbol{\sigma}\cdot\mathbf{B}\right]\left(\begin{array}{c}\psi_{+}(\mathbf{r},t)\\\psi_{-}(\mathbf{r},t)\end{array}\right)$$

Pauli-Gleichung: nichtrelativistische Wellengleichung für Spin-1/2 Teilchen

8. Spin

8.8.b. Bewegung einer Ladung in einem zeitabhängigen em-Feld

➤ Hamiltonoperator:

$$H = \frac{1}{2m} \left[\mathbf{p} - \frac{e}{c} \mathbf{A}(\mathbf{r}, t) \right]^2 + e \Phi(\mathbf{r}, t) + \mu_B \boldsymbol{\sigma} \cdot \mathbf{B}$$

➤ Allgemeine Pauli-Gleichung:

$$i\hbar\frac{\partial}{\partial t}\left(\begin{array}{c}\psi_{+}(\mathbf{r},t)\\\psi_{-}(\mathbf{r},t)\end{array}\right) = \left\{\left(\frac{1}{2m}\left[\frac{\hbar}{i}\boldsymbol{\nabla}-\frac{e}{c}\mathbf{A}(\mathbf{r},t)\right]^{2}+e\Phi(\mathbf{r},t)\right)\mathbb{1}+\mu_{B}\boldsymbol{\sigma}\cdot\mathbf{B}\right\}\left(\begin{array}{c}\psi_{+}(\mathbf{r},t)\\\psi_{-}(\mathbf{r},t)\end{array}\right)$$

8.9. Aufgaben

Siehe Übungen.

9. Näherungsmethoden zur Berechnung stationärer Zustände

9.1. Ritzsches Variationsverfahren

9.1.a. Herangehen

> Betrachten stationäre SG und beliebig normiertes: $|\psi\rangle = \sum_{n} |n\rangle \underbrace{\langle n | \psi \rangle}_{c_n}$, dann offenbar:

$$H |n\rangle = E_n |n\rangle, \qquad E_o < E_1 \le E_2$$

$$\langle \psi | H | \psi \rangle = \sum_{n} |c_{n}|^{2} E_{n} \ge E_{o} \sum_{n} |c_{n}|^{2} = E_{o} \implies E_{o} \le \langle \psi | H | \psi \rangle \quad \forall \quad |\psi \rangle$$

 \succ Grundzustandsenergie: Berechung des Minimums des Integrals

$$\langle \psi | H | \psi \rangle = \int d^N r \, \psi^* H \, \psi$$
 mit $\langle \psi | \psi \rangle = \int d^N r \, \psi^* \psi = 1$

 \succ Praktisches Herangehen: Wahl einer Testfunktion mit unbekannten Parameters $\alpha,\,\beta,\,\ldots$

$$\mathcal{J}(\alpha, \beta, ...) = \langle \psi(\mathbf{r}; \alpha, \beta, ...) | H | \psi(\mathbf{r}; \alpha, \beta, ...) \rangle, \qquad \qquad \frac{\partial \mathcal{J}}{\partial \alpha} = \frac{\partial \mathcal{J}}{\partial \beta} = ... = 0$$

9. Näherungsmethoden zur Berechnung stationärer Zustände

Minimum zum Funktional $\mathcal{J}(\alpha, \beta, ...)$... direkte Variation; Ritzsche Variation

➤ Angeregte Zustände: ψ_o sei (bekannter) Grundzustand,

:

$$E_{1} = \min \langle \psi_{1} | H | \psi_{1} \rangle \quad \text{mit NB}: \quad \langle \psi_{1} | \psi_{1} \rangle = 1, \quad \langle \psi_{1} | \psi_{o} \rangle = 0$$
$$E_{2} = \min \langle \psi_{2} | H | \psi_{2} \rangle \quad \langle \psi_{2} | \psi_{2} \rangle = 1, \quad \langle \psi_{2} | \psi_{o} \rangle = 0, \quad \langle \psi_{2} | \psi_{1} \rangle = 0$$

Je höher die Anregung, umso mehr NB und umso komplizierter ist folglich das Variationsproblem.

Beispiel (Grundzustand und erster angeregter Zustand des harmonischen Oszillators):

 $H = -\frac{\hbar^2}{2m} \frac{d^2}{dxt^2} + \frac{m\omega^2}{2} x^2 , \qquad \text{Testfunktion } \psi(x), \quad \psi(x \to \pm \infty) = 0 , \text{ normierbarer Grundzustand ohne Knoten}$ $\psi(x, \alpha) = A \exp\left(-\frac{\alpha x^2}{2}\right), \qquad \text{Normierung:} \quad A = \left(\frac{\alpha}{\pi}\right)^{1/4}$ $\mathcal{J}(\alpha) = \langle \psi | H | \psi \rangle = \frac{1}{4} \left(\frac{\hbar^2 \alpha}{m} + \frac{m\omega^2}{\alpha}\right), \qquad \frac{\partial \mathcal{J}}{\partial \alpha} ! = 0 = \frac{\hbar^2}{4m} - \frac{m\omega^2}{4\alpha^2} \quad \rightsquigarrow \quad \alpha_o = \frac{m\omega}{\hbar}$

Näherungsenergie und WF:

$$E_o = \mathcal{J}(\alpha_o) = \frac{\hbar \omega}{2}, \qquad \psi_o = \psi(x, \alpha_o) = \left(\frac{m \omega}{\pi \hbar}\right)^{1/4} \exp\left(-\frac{m \omega x^2}{2 \hbar}\right)$$

Berechnung des 1. angeregten Zustandes: ... Testfunktion soll orthogonal zu ψ_o sein

$$\psi_{1}(x,\beta) = B x \exp\left(-\frac{\beta x^{2}}{2}\right), \qquad \text{Normierung:} \quad B = \frac{2\beta^{3/2}}{\sqrt{\pi}}$$
$$\mathcal{J}_{1}(\beta) = \langle \psi_{1} | H | \psi_{1} \rangle = \frac{3}{4} \left[\frac{\hbar^{2} \beta}{m} + \frac{m \omega^{2}}{\beta}\right] \qquad \rightsquigarrow \qquad \frac{\partial \mathcal{J}}{\partial \beta} ! = 0 \qquad \rightsquigarrow \qquad \beta_{o} = \frac{m \omega}{\hbar}$$
$$E_{1} = \mathcal{J}_{1}(\beta_{o}) = \frac{3}{2} \hbar \omega, \qquad \qquad \psi_{1} = \left(\frac{2}{\sqrt{\pi}}\right)^{1/2} \left(\frac{m \omega}{\hbar}\right)^{3/4} x \exp\left(-\frac{m \omega x^{2}}{2\hbar}\right)$$

Beispiel (Grundzustand des H-Atoms): $H = -\frac{\hbar^2}{2m}\nabla^2 - \frac{Ze^2}{r}$... siehe Übungen.

Variationrechnungen:

≻ Bisher Testfunktionen, die von reellen Parametern α , β , ... abhängen; alternativ kann die Form der WF variiert werden:

 $\min \langle \psi \, | \, H \, | \, \psi \rangle \qquad \text{mit NB}: \quad \langle \psi \, | \, \psi \rangle \ = \ 1$

$\succ \delta \psi$ sein Variation von ψ ; *H* hermitesch:

 $\langle \delta \psi | H | \psi \rangle + \langle \psi | H | \delta \psi \rangle = \langle \delta \psi | H \psi \rangle + \langle H \psi | \delta \psi \rangle = 0, \qquad \langle \delta \psi | \psi \rangle + \langle \psi | \delta \psi \rangle = 0 \quad (NB)$

- 9. Näherungsmethoden zur Berechnung stationärer Zustände
- ➤ Zusammenfassung mittels eines Langrange-Multiplikators E: ... wobei die Variation nach $\delta \psi$ und $\delta \psi^* = \langle \delta \psi |$ unabhängig betrachtet werden können:

$$\langle \delta \psi | H - E | \psi \rangle + \langle (H - E) \psi | \delta \psi \rangle = 0 \qquad \rightsquigarrow \qquad (H - E) \psi = 0, \qquad (H - E) \psi^* = 0$$

≻ Häufige Anwendung in der Vielteilchenphysik (Kerne, Ionen , Atome und Moleküle , Cluster, FK, Oberflächen)

9.2. Zeitunabhängige Störungstheorie ohne Entartung (Rayleigh-Schödinger ST)

≻ Anwendbar, falls ähnliches (benachbartes) System exakt lösbar ist und deren Eigenwerte und EF bekannt sind.

$$H |n\rangle = E_n |n\rangle$$

$$H = H_o + H_1 + H_2 + \dots$$

$$H_o |n^{(0)}\rangle = E_n^{(0)} |n^{(0)}\rangle$$

$$\dots$$
 Loesungen bekannt zu H_o

$$E_n \approx E_n^{(0)}$$

$$\dots$$
 bekannte Loesungen

 \succ Gesucht:

 $H |n\rangle = E_n |n\rangle$

 \succ Annahme: Entwicklung in Potenzreihe möglich

 $E_{n} = E_{n}^{(0)} + \lambda E_{n}^{(1)} + \lambda^{2} E_{n}^{(2)} + \dots \qquad E_{n}^{(k)} \qquad k - \text{teStoerungskorrekturen}$ $|n\rangle = |n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \lambda^{2} |n^{(2)}\rangle + \dots \qquad |n^{(k)}\rangle \qquad \text{zum n} - \text{ten EW und EF}$ Störungsreihe mit bekannten ungestörten Energien $E_{n}^{(o)}$ und WF $|n^{(o)}\rangle$

Bemerkungen

i) Störungsreihen gelten oftmals als nicht konvergent , dennoch können erste Terme { $E_n^{(1)}$, $|n^{(1)}\rangle$; $E_n^{(2)}$, $|n^{(2)}\rangle$ } brauchbare Korrekturen liefern. Wichtig ist:

$$E_n, |n\rangle \longrightarrow_{\lambda \to 0} E_n^{(o)}, |n^{(o)}\rangle$$

Zustände zu endlichem λ dürfen qualitativ nicht vom ungestörten System ($\lambda = 0$) verschieden sein.

ii) Mitunter können folglich E_n , $|n\rangle$ nicht nach λ entwickelt werden; beispielsweise können Bindungszustände nicht aus den ungebundenen Zuständen erhalten werden.

Zerlegung der SG nach Potenzen von λ :

 \succ Koeffizientenvergleich: Einsetzen der Potenzreihe in SG und Koeffizientenvergleich in $\lambda^0, \lambda^1, \lambda^2, \dots$

$$(H_o + V) |n\rangle = (H_o + \lambda W) |n\rangle = E_n |n\rangle$$

$$(H_o + \lambda W) \left(\left| n^{(o)} \right\rangle + \lambda \left| n^{(1)} \right\rangle + ... \right) = \left(E_n^{(o)} + \lambda E_n^{(1)} + \right) \left(\left| n^{(0)} \right\rangle + \lambda \left| n^{(1)} \right\rangle + \right)$$

9. Näherungsmethoden zur Berechnung stationärer Zustände

➤ Gleichungssystem:

$$H_{o} | n^{(0)} \rangle = E_{n}^{(o)} | n^{(0)} \rangle$$

$$H_{o} | n^{(1)} \rangle + W | n^{(o)} \rangle = E_{n}^{(o)} | n^{(1)} \rangle + E_{n}^{(1)} | n^{(o)} \rangle$$

$$H_{o} | n^{(2)} \rangle + W | n^{(1)} \rangle = E_{n}^{(o)} | n^{(2)} \rangle + E_{n}^{(1)} | n^{(1)} \rangle + E_{n}^{(2)} | n^{(0)} \rangle$$

$$:$$

 \succ Normierung: von $|n\rangle$ festlegen durch

$$\left\langle n^{(0)} \mid n^{(0)} \right\rangle = 1, \qquad \left\langle n^{(0)} \mid n \right\rangle = 1 \qquad \qquad \rightsquigarrow \quad \lambda \left\langle n^{(0)} \mid n^{(1)} \right\rangle + \lambda^2 \left\langle n^{(0)} \mid n^{(2)} \right\rangle + \dots = 0$$
$$\left\langle n^{(0)} \mid n^{(1)} \right\rangle = \left\langle n^{(0)} \mid n^{(2)} \right\rangle = \dots = 0 \qquad \qquad \text{fur endliche } \lambda$$

intermediäre Normierung

> Schrittweise Bestimmung der $E_n^{(k)}$ und $|n^{(k)}\rangle$ durch Entwicklung der $|n^{(k)}\rangle = \sum_{m \neq n} |m^{(0)}\rangle c_m^{(k)}$ und Projektion auf $|n^{(o)}\rangle$

$$H_{o} \left| n^{(1)} \right\rangle + W \left| n^{(o)} \right\rangle = E_{n}^{(o)} \left| n^{(1)} \right\rangle + E_{n}^{(1)} \left| n^{(o)} \right\rangle$$

$$\left\langle n^{(0)} \left| H_{o} \right| \sum_{m \neq n} m^{(0)} c_{m}^{(1)} \right\rangle + W_{nn} = E_{n}^{(o)} \left\langle n^{(0)} \left| \sum_{m \neq n} m^{(0)} c_{m}^{(1)} \right\rangle + E_{n}^{(1)} \implies E_{n}^{(1)} = W_{nn} = \left\langle n^{(o)} \left| W \right| n^{(o)} \right\rangle$$

$$= 0$$

$$> \text{Projektion auf } |p^{(o)}\rangle \neq |n^{(o)}\rangle$$

$$\left\langle p^{(0)} | H_o | \sum_{m \neq n} m^{(0)} c_m^{(0)} \right\rangle + W_{pn} = E_n^{(o)} \left\langle p^{(0)} | \sum_{m \neq n} m^{(0)} c_m^{(1)} \right\rangle$$

$$W_{pn} = \left(E_n^{(o)} - E_p^{(o)} \right) c_p^{(1)}, \qquad c_p^{(1)} = \frac{W_{pn}}{E_n^{(o)} - E_p^{(o)}}$$

$$\left| n^{(1)} \right\rangle = \sum_{p \neq n} \frac{\left\langle p^{(0)} | W | n^{(0)} \right\rangle}{E_n^{(o)} - E_p^{(o)}} \left| p^{(1)} \right\rangle$$
Korrektur 1. Ordnung

 \succ Analog auch für Gleichungen in höheren Potenzen von λ

$$E_n^{(2)} = \left\langle n^{(o)} | W | n^{(1)} \right\rangle = \sum_{p \neq n} \frac{\left| \left\langle p^{(0)} | W | n^{(0)} \right\rangle \right|^2}{E_n^{(o)} - E_p^{(o)}}$$

Beobachtungen:

- i) Für den Grundzustand ist die Korrektur 2. Ordnung $E_o^{(2)}$ stets negativ.
- ii) Falls die Matrixelemente W_{np} von etwa gleicher Größe sind, dann liefern benachbarte Niveaus einen größeren (mitunter dominanten) Beitrag in zweiter Ordnung.
- iii) Im kontinuierlichen Teil des Spektrums: $\sum_m \dots \longrightarrow \int dm \dots$
- ➤ ST brauchbar, wenn eine sukzessive Approximation konvergiert, d.h. jede folgende Korrektur klein gegenüber den vorhergehenden Korrekturen ist.

$$|W_{np}| = |\langle n^{(0)} |W| p^{(0)} \rangle| \ll |E_n^{(o)} - E_p^{(o)}| \qquad n \neq p$$

 $9.\ N$ äherungsmethoden zur Berechnung station
ärer Zustände

Beispiel (β -Zerfall von Kernen mit Kernladung Z + 1):

$$V = -\frac{e^2}{4\pi \epsilon_o r} = -\frac{e^4 m}{\hbar^2 \rho/a} = -\frac{1}{\rho}$$

$$\Delta E = \left(-\frac{e^4 m}{\hbar^2}\right) \left\langle n\ell \left|\frac{1}{\rho}\right| n\ell \right\rangle = -\frac{Z}{n^2} \quad \text{Hartree} \qquad \Longleftrightarrow \qquad \Delta E_{\text{exakt}} = -\frac{1}{n^2} \left(Z + \frac{1}{2}\right)$$